AGE-RELATED MACULAR DEGENERATION: ITS ASSOCIATION WITH THE ε4 ALLELE OF THE APOLIPOPROTEIN E GENE

DEGENERACIÓN MACULAR ASOCIADA A LA EDAD: ASOCIACIÓN CON EL ALELO ε4 DEL GEN DE LA APOLIPOPROTEÍNA E

ASENSIO-SÁNCHEZ VM1, RODRÍGUEZ-MARTÍN T1, GALA-MOLINA I1, RODRÍGUEZ-FERNÁNDEZ I1

ABSTRACT

Objective: The apolipoprotein E (APOE) ε4 allele is a well-established factor associated with age-related macular degeneration (AMD). This disorder is characterized by a typical progressive central visual impairment. Our aim was to study further the relationship of the APOE genotype associated with AMD.

Materials and methods: We evaluated a group of 95 patients with AMD and 65 controls. The APOE genotype for each participant in the study was determined.

Results: The allele was associated with age-related macular degeneration (OR = 5.6; 95% CI= 3.4-8.8 ; p< 0.001). Female patients with at least one ε4 allele had a significantly earlier age at diagnosis (ε4+ = 72.2 S.D. 5.1; ε4- = 78.8 ± 5.7; p<0.001).

Conclusions: The APOE ε4 allele is not a protective factor for AMD, but is associated with an increased risk of its development (Arch Soc Esp Oftalmol 2006; 81: 9-12).

Key words: Apolipoprotein E, allele ε4, age-related macular degeneration.

RESUMEN

Objetivo: El alelo ε4 de la apolipoproteína E (APOE) es un factor de riesgo bien establecido en la degeneración macular asociada a la edad (DMAE). Esta enfermedad se caracteriza por pérdida progresiva de la visión central. Nuestro objetivo es estudiar la asociación del genotipo APOE con la DMAE.

Material y método: Se estudió un grupo de 95 pacientes con DMAE y 65 controles. A todos se les determinó el genotipo de la APOE.

Resultados: El alelo ε4 se asoció a degeneración macular asociada a la edad (OR = 5.6; 95% CI= 3.4-8.8 ; p< 0.001). La edad de diagnóstico es significativamente inferior en las pacientes que tienen al menos un alelo ε4 (ε4+ = 72,2 D.E. 5,1; ε4- = 78,8 +/- 5,7; p<0,001).

Conclusiones: El alelo ε4 de la APOE no es un factor de protección para la degeneración macular asociada a la edad y se asocia a un mayor riesgo de desarrollarla.

Palabras clave: Apolipoproteína E, alelo ε4, degeneración macular asociada a la edad.
INTRODUCTION

Age-related macular degeneration (ADM) is the first cause of irreversible blindness in industrialised countries, with a prevalence of 13% in the 85-year age group (1). The etiopathogenicity of this disease is unknown although it is believed that ADM can be of genetic origin, even though environmental factors have a great influence (2). In recent decades, its pathology has been increasingly researched in order to determine its causes and risk factors, among which genetic factors are predominant (2-8).

The apolipoprotein E gen (APOE) is the first susceptibility gen related to AMD. APOE is a 299-aminoacid polymorphic plasmatic protein involved in the transport of cholesterol and other lipids, which has been demonstrated in druses and basal deposits (9). It is synthesised mainly in the liver, with the brain being the second synthesis organ. In the retinal pigmentary epithelium there is a regulation in the expression of APOE (10). It presents 3 isoforms: E2, E3, E4, coded by three alleles ε2, ε3, and ε4, with a single locus in chromosome 19 (11). In the general population the frequency of ε2 is of 5%, of allele ε3 85% and of allele ε4 10%. In different papers it has been established that carrying an allele ε4 is a protection factor for AMD (12-14). the APOE genotype could explain 50% of genetic variability of this disease. Other studies prove the lack of association between APOE and AMD in families (15).

The object of this study is to establish the relationship of genotype APOE and AMD in a sample of retina practice outpatients and study the association with APOE gen allele ε4.

SUBJECTS, MATERIAL AND METHODS

This study was approved by the Research and Training Committee of our hospital. Patients were recruited from the retina practice. 160 individuals were studied (95 patients and 65 controls) between 2002 and 2004. Table I shows the demographic characteristics of both groups. The inclusion criteria for patients were as follows:

- Accepts to participate in the study, signing informed consent.
- Early AMD (white druses>63 µm) with or without pigmentation) or late AMD (neovascular or geographic form).

| Table I. Demographic Data |
|---------------------------|----------------|
| Control group | AMD group |
| N.º 65 | 95 |
| Age 72.6 D.E. 6.8 | 75.6 D.E. 6.1 |
| Sex 52.5% women | 60.6% women |
| Diagnosis age | 72.9±6.4 |

AMD: age-related macular degeneration; N.º: No.
RESULTS

Table II shows the different genotypes of the APOE gen as well as a comparison between patients and the control group. Table III presents the significance degree of allele ε4 in patients against the control group and the result of calculating the association degree (OR) of this allele with the group of patients vis-à-vis the control group. The risk depending of allele ε4 indicates that the probability of suffering AMD increases in a factor of 5.2 (IC 95%= 3.5-8.3; p<0.001) for each allele ε4 the patient has. Allele ε4 is associated to AMD in a similar way in men (OR=5.25; IC 95%= 2.60-11.30) and in women (OR=5.55; IC 95%= 2.89-10.90). The association of allele ε4 with AMD is significant in all age groups: 65-70 years: OR=10.5; IC 95%= 4.89-22.90; 70-75 years: OR=7.15; IC 95%= 2.6-20.1; 75-80 years: OR=11.5; IC 95%= 4.89-26.90.

A stratified analysis of the sample by gender shows that allele ε4 is associated to a lower AMD diagnostic age in the group of women (ε4+ = 72.2 D.E. 5.1; ε4- = 78.8 D.E. 5.7; p<0.001).

DISCUSSION

Age-related macular degeneration is the first cause of irreversible blindness in Western countries.

Table II. APOE gen genotypes

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Control group</th>
<th>AMD group</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2/3</td>
<td>10 (15.3)</td>
<td>12 (12.6)</td>
</tr>
<tr>
<td>2/4</td>
<td>2 (3)</td>
<td>12 (12.6)</td>
</tr>
<tr>
<td>3/3</td>
<td>41 (63)</td>
<td>34 (35.7)</td>
</tr>
<tr>
<td>3/4</td>
<td>12 (18.4)</td>
<td>29 (30.5)</td>
</tr>
<tr>
<td>4/4</td>
<td>0</td>
<td>8 (8.4)</td>
</tr>
</tbody>
</table>

APOE: apolipoprotein E; AMD: age-related macular degeneration.

Table III. Allele ε4 and degree of association with AMD against controls

<table>
<thead>
<tr>
<th>% de APOE</th>
<th>OR</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>AMD</td>
<td>50%</td>
<td>5.6</td>
</tr>
</tbody>
</table>

The prevalence of late AMD is of 0.2% in the 55-64 age group, increasing up to 13% in the 85-year age group (1). It is estimated that the number of patients with AMD will double by the year 2020 (1). At present, therapeutic options for AMD are exclusively limited to the neovascular form with low success rates. From the viewpoint of public health there are preventive recommendations: no smoking, avoid prolonged exposure to sunlight, regularly eat greens and blue fish (1,3-4). However, it is difficult to establish the efficacy of these recommendations, which should be particularly emphasized for genetic risk subjects: family forms of AMD and some phenotype of APOE. AMD is a multifactorial pathology in which studies emphasise the importance of genetic factors (1,7-14). Recently, Hageman et al (7) in a study of F-factor gene (HF1/CFH) in a population of 900 patients with AMD and 400 controls, demonstrated the association between AMD and predisposition haplotypes (HF1 SNPs) and protection haplotypes. Klein et al found an association between AMD and variants in the F-factor gene, and accordingly homozygote individuals for the risk allele have an increased probability of 7.4 for suffering AMD (8).

In this study we aimed at studying the relationship of the apolipoprotein E gen genotype and AMD in a group of patients against a control group. The latter, being made up by spouses of AMD patients, minimized the effect of environmental and socioeconomic variables which may influence the expression of APOE (16). In our sample (West Mediterranean) the relationship between allele ε4 and sporadic AMD is confirmed, and its presence increases five times the risk of suffering said disease. As regards gender, no differences have been appreciated in the degree of association between allele ε4 and the risk of AMD, and therefore the APOE genotype in our population would not be the basis for the greater prevalence of AMD in women. For this reason, other factors must be analysed such as longevity or hormonal alterations. Allele ε4 as a significant relationship with age in all groups, but the biggest relationship is in the 70-75 group. We have no explanation for the association found between allele _4 and an earlier expression of AMD in women. Estrogens could be related to this difference, because it is known they interact with APOE at the level of the brain and are involved in the synthesis of the beta-amyloid peptide by microglya (17,18).
Clinical studies have provided contradictory results for the association between AMD and different APOE gen alleles (12-15). The result of this study is opposite to that of the majority of studies which demonstrated the protecting role of allele ε4 in AMD (7-14). Therefore, the reasons why this allele is a risk factor for cardiovascular diseases and Alzheimer (EA) (1,17,19) and not for AMD is an enigma, considering moreover that it has some histopathological similarities with EA (1). In summary, our study proves a non-protecting association of allele ε4 with AMD. We do not recommend the use of the APOE genotype as an AMD diagnostic test, but we consider it is important to establish intervention groups with prevention measures from the onset of the first symptoms.

REFERENCES

