SHORT NOTE

POTENTIAL USE OF STEVIA REBAUDIANA IN ANIMAL FEEDS

EMPLEO POTENCIAL DE STEVIA REBAUDIANA EN ALIMENTACIÓN ANIMAL

1Department of Animal Production. University of Ilorin. Nigeria. Olu3011@yahoo.com
2Laboratory for Physiology and Immunology of Domestic Animal. Catholic University. Kasteelpark Arenberg
3Department of Animal Production. University of Lome. Togo. jak_tona@yahoo.com

ADDITIONAL KEYWORDS
Nutritional value. Poultry feed.

SUMMARY

The nutritional profile of the leaves and stem of Stevia rebaudiana, and their potential utilization in an animal model were studied. Stevia leaves and stem had 16% and 6.7% crude protein and were low in fat content (2.6 and 1.1%) respectively. The fatty acid profile of fat showed a preponderance of unsaturated fatty acids (65.8% and 71.4% for leaves and stem respectively). Linolenic acid was the most abundant fatty acid in stevia leaf oil (36%) whereas linoleic acid was the highest in stems (38%). The crude fiber contents on dry fat free basis were 6.8% and 45.4% for leaves and stem respectively. The K content of stevia leaves and stem were comparable; Ca, Mg, Fe, Cu, Zn and Mn were higher in leaves and the opposite was true for Na. The tests with broiler chickens showed that apparent, nitrogen corrected, and true metabolisable energy values for leaves were 2113, 2098 and 2223 kcal/kg and for stems 1573, 1554 and 1675 kcal/kg respectively. Retention of the protein from the leaves and stems by chickens was 63% and 65.7% respectively. Stevia leaves contain other nutritional attributes besides of the sweetening components.

INTRODUCTION

Stevia (Stevia rebaudiana, Bertoni) is a perennial shrub that is indigenous to Paraguay and Brazil. The leaf, and its extracts have been used as a natural sweetener.
Often referred to as the sweet herb of Paraguay (Geuns, 2004), stevia is today grown commercially for sweeteners extraction.

The sweetening property is associated with their contents of several glycosides, stevioside, steviolbioside, rebauciosides A to F, dulcoside A and steviol (Gardana et al., 2003; Geuns, 2004). These glycosides and their derivatives are known to account for 4-20% of the dry weight of stevia leaves (Oliveira-Filho et al., 1989; Geuns et al., 2003). There is a preferential accumulation of different glycosides in different parts of the plant (Alves and Ruddat, 1979; Richman et al., 1999) more apparent in mature than young stevia tissues for sweetening glycosides (Geuns, 2004).

Stevia and its extract have been studied widely from the sweetener and medicinal points of view (Oviedo et al., 1970; Takaki et al., 1985; Melis, 1999). A search through literature shows no information on the non-sweetening components which make up 80-90% dry weight of this plant. This study provides the biochemical/nutritional profile of the leaves and stems and the potential utilization of the nutrients by broiler chickens as an animal model.

MATERIALS AND METHODS

Dried and ground stevia leaves and stem were obtained from Stevita Company in Brazil. Quadruplicate samples of the ground leaves and stems were analyzed for protein, fat, crude fibre, ash, minerals, fatty acids profile, stevioside and rebaudioside A. The apparent metabolisable energy (AME), apparent nitrogen-corrected metabolisable energy (AMEn) and true metabolisable energy (TME) of the leaves and stems were calculated. The feed and excreta samples were also analyzed for nitrogen to calculate N retention. Data were analysed by t-test to compare leaves and stems (statistical significance was set at <5%).

<table>
<thead>
<tr>
<th>Table I. Experimental grower diets used for digestibility study. (Dietas experimentales usadas para el estudio de digestibilidad).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet 1</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Basal (%)</td>
</tr>
<tr>
<td>Stevia leaf (%)</td>
</tr>
<tr>
<td>Stevia stem (%)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Protein (%)</td>
</tr>
<tr>
<td>ME (kcal/kg)</td>
</tr>
</tbody>
</table>

*Feed withdrawn 24 h prior to a 24 h excreta collection period.
RESULTS

Table II summarizes the analytical composition of stevia. The protein and fat contents of the leaves was more than twice the concentration in the stem. The same trend was observed for ash content. The stem consists of 45% crude fiber as opposed to less than 7% in the leaves. The stevioside content of stevia leaves was 6.5% compared to 0.69% in the stem. Rebaudioside A content of the leaves was 2.3% as opposed to 0.3% in the stem.

There were variations in the fatty acid profiles of stevia. Stevia leaves fat extract contained more saturated fatty acid than stems. The reverse was true for the total unsaturated fatty acid. Linoleic acid (C18:3) was the dominant fatty acid in stevia leaf (36%). In contrast, oleic acid (C18:2) was the dominant fatty acid in stem.

Ca and Mg levels were 20-fold higher in leaves than stems. The Fe content of leaves was 30-fold higher than in the stem. P, Zn and Cu were higher to lesser extent. The contrast was true for Na and K. There were only traces of Co in both leaves and stems.

Although both the leaves and stem had comparable gross energy values, apparent, nitrogen corrected, and true metabolisable energy values were higher in leaves than stems. The calculated retention of protein from leaves was 63% and 65.7% from stems.

DISCUSSION

The stevioside and rebaudioside A contents of leaves and stems are within those reported in literature (Mizukami et al., 1982; Geuns, 2004; Hashimoto and Moriyasu, 1978). There was evidence from this study, of a preferential deposition of stevioside and rebaudioside A in the leaves.

The non-sweetener nutritional profile of stevia leaves and stem was close to that of some flowering plants. The protein content of the leaves (16%) was comparable to that reported for cassava leaf meal (Aduku, 1993)

| Table II. Proximate, stevioside, rebaudioside A, (n=4, % DM) gross and metabolisable energy content (n=6, kcal/kg) of stevia leaf and stem. (Composición nutritiva, estevio, rebaudiosido A, energía bruta y metabolizable en hojas y tallos de Stevia). |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | Protein | Fat | Crude fibre | Ash | Crude fiber | SFA | USFA | Stevioside A | Rebaudioside A | Calcium | Phosphorus | Sodium | Potassium | Magnesium | Zinc | Manganese | Iron | Copper |
| Leaf | 16.0±0.3a | 2.6±0.02a | 6.8±0.2b | 15.5±0.3a | 0.6±0.02a | 29.5±1.5 | 3.0±0.06a | 4.0±0.03a | 9.9±0.02a | 4.1±0.04a | 1.73±0.03 | 0.24±0.01a | 20±0.4a | 0.25±0.01a | 1.15±0.04a | 6.0±0.08a |
| Stem | 6.7±0.1b | 1.1±0.01b | 45.1±0.8a | 5.6±0.6b | 0.2±0.01b | 26.4±1.2 | 1.2±0.04b | 2.0±0.02b | 5.0±0.03b | 1.85±0.02 | 1.73±0.03 | 0.15±0.01b | 8.0±0.2b | 0.09±0.01b | 0.02±0.01b | 2.0±0.04b |

Archivos de zootecnia vol. 60, núm. 229, p. 135.
and alfalfa (NRC, 1994). The fat content of stevia leaves was also low and comparable with those of non-oil bearing plants. The fatty acid profile of stevia oil showed high degree of unsaturation and a clear difference in the fatty acid profile between the leaves and the stem. The high concentrations of polyunsaturated fatty acids in stevia oil implied that stevia plant might be a fodder source of nutritionally desirable fatty acids.

The high crude fiber and low metabolisable energy content of stevia stem was suggestive of low nutritional value for monogastric animals including man. However, there might be a potential use for this roughage as a sweet energy diluent for monogastric animals and as a source of energy for ruminant animals that are equipped to digest high fiber diets. Stevia leaves may be classified as a high-energy fodder. The test with chickens suggests that it was non-caloric as evidenced by the AME values. The protein content of both the leaves and stem seemed to be moderately digestible and retained in the broilers. Stevia leaves were richer in minerals than the stem with the exception of sodium and potassium that were more abundant in the stem. The high iron content of the leaves might have potential benefits in anemic conditions.

In conclusion, the nutritional profile of stevia plant suggests that it contains high levels of protein and gross energy that may be suitable for ruminant animals rather than for monogastric animals such as chickens. It could however be used as an energy diluent in monogastric diets due to its low ME and non-caloric nature.

REFERENCES

