Using Voronoi diagrams to describe tactical behaviour in invasive team sports: an application in basketball

Aplicación de diagramas de Voronoi para describir el comportamiento táctico en deportes de equipo de invasión: una aplicación en el baloncesto

Usando diagramas de Voronoi para describer o comportamento tático em esportes de equipe invasivos: uma aplicação no basquete

António Lopes¹, Sofia Fonseca¹, Roland Lese² y Arnold Baca²

¹Faculty of Physical Education and Sports, Lusófona University, Lisbon, Portugal,
²Department of Biomechanics, Kinesiology and Applied Computer Science, Centre for Sport Science and University Sports, University of Vienna, Austria

Abstract: Team sports are recognized as dynamic systems of interaction, where individual and collective patterns of behaviour emerge from a confluence of multiple constraints on the players. Players' distribution on the field is often associated with tactical options, strategic decisions, and principles. Hence, the analysis of positional data has gained relevance and is now a hot topic in sport science research, feeding the interests of researchers, analysts and coaches.

Recent studies tried to characterize teams' and players' tactical behaviour using variables derived from their spatial distribution (e.g., the area of the convex hull). The Voronoi diagrams (VD) have been introduced for the analysis of the spatial organization in team sports as it allows, unlike other models, defining the dominant region of both players and teams. This study considered the application of VD to describe offensive tactical behaviour in basketball. For this purpose, a formal game between two teams of Austrian basketball talents was observed, from where 19 offensive sequences were selected for analysis. The results indicate that the percentage of super-st omped by each team, can be considered to describe teams' patterns of spatial organization during a positional attack, allowing to classify and distinguish transition phase and organized phase. This approach may also help to reduce the time spent in video analysis by coaches, giving them more time to prepare training plans and sessions in order to improve the tactical and strategic performance of their teams.

Keywords: Voronoi diagrams, basketball, tactical behavior, spatial organization.

Resumen: Los deportes colectivos son reconocidos como sistemas de interacción dinámica, donde patrones individuales y colectivos de comportamiento surgen de la confluencia de múltiples condicionantes sobre los jugadores. La distribución de los jugadores en el campo se asocia con opciones tácticas, decisiones estratégicas y principios de juego. Por lo tanto, el análisis de los datos de posición se ha ganado relevancia y ahora es un tema importante en la investigación, correspondiendo a las necesidades de los investigadores, analistas y entrenadores. Estudios recientes trataron de caracterizar el comportamiento táctico de equipos y jugadores usando variables derivadas de su distribución espacial (e.g., el área de la envolvente convexa). Los diagramas de Voronoi (DV) se han introducido para el análisis de la organización espacial en deportes de equipo ya que permite definir, a diferencia de otros modelos, la región dominante de los jugadores y equipos. Este estudio examinó la aplicación de DV para describir lo comportamiento táctico ofensivo en baloncesto. Con este fin, un juego informal entre dos equipos de talentos Austriacos fue considerado de donde 19 secuencias ofensivas fueron seleccionadas para análisis. Los resultados indican que el porcentaje de superficie ocupada por cada equipo, se puede considerar para describir patrones de comportamiento de los equipos durante un ataque posicionado, en particular, clasificar y distinguir la fase de transición y la fase organizada. La aplicación práctica de estos resultados puede ayudar a reducir el tiempo empleado en el análisis de video por los entrenadores, dándoles más tiempo para preparar los planes de formación y sesiones con el fin de mejorar el rendimiento táctico y estratégico de sus equipos.

Palabras clave: Diagramas de Voronoi, baloncesto, comportamiento táctico, organización espacial.

Resume: Les sports collectifs sont reconnus comme systèmes de interaction dynamique, où des patrones individuels et collectifs de comportement surgissent de la confluence de différents contraintes s’étant appliquées aux joueurs. La distribution des joueurs sur le terrain est souvent associée à des options tactiques, à des décisions stratégiques et à des principes de jeu. Ainsi, l’analyse des données positionnelles des joueurs a gagné en importance et est maintenant un sujet de recherche de plus en plus fréquent dans le sport scientifique, alimentant les intérêts des chercheurs, des analystes et des entraîneurs.

Les études récentes ont cherché à caractériser le comportement tactique des équipes et des joueurs à l’aide de variables dérivées de leur distribution spatiale (e.g., la zone de convexité). Les diagrammes de Voronoi (DV) ont été introduits pour l’analyse de l’organisation spatiale des équipes de sport équipe de jeu. Pour cette étude, un match informel entre deux équipes de talents Austriens, dont les joueurs étaient sélectionnés sur 19 séquences offensives pour l’analyse. Les résultats indiquent que le pourcentage de superficie occupée par chaque équipe peut être considéré pour décrire les modèles de comportement tactique offensif des équipes. Cette approche peut également aider à réduire le temps passé à l’analyse vidéo par les entraîneurs, leur laissant plus de temps pour préparer des plans de formation et des sessions visant à améliorer le rendement tactique et stratégique de leurs équipes.

Études récentes ont cherché à caractériser le comportement tactique des équipes et des joueurs à l’aide de variables dérivées de leur distribution spatiale (e.g., la zone de convexité). Les diagrammes de Voronoi (DV) ont été introduits pour l’analyse de l’organisation spatiale des équipes de sport équipe de jeu. Pour cette étude, un match informel entre deux équipes de talents Austriens, dont les joueurs étaient sélectionnés sur 19 séquences offensives pour l’analyse. Les résultats indiquent que le pourcentage de superficie occupée par chaque équipe peut être considéré pour décrire les modèles de comportement tactique offensif des équipes. Cette approche peut également aider à réduire le temps passé à l’analyse vidéo par les entraîneurs, leur laissant plus de temps pour préparer des plans de formation et des sessions visant à améliorer le rendement tactique et stratégique de leurs équipes.

Palabras clave: Diagramas de Voronoi, baloncesto, comportamiento táctico, organización espacial.
Introduction

Team sports are a major study object in sport science research. The interest on studying players and teams has increased over the years and, although physiological and biomechanical approaches have been privileged (Garganta, 2009), the interest in studying tactical behaviour of teams and players has seen a huge increase in the last few years. This phenomena is a consequence of a strong orientation towards a healthy and fruitful bond between research, training and competition in team sports (Garganta, 2009).

The analysis of tactical behavior in team sports of an invasive nature (e.g., soccer, basketball and handball) has aimed to define measures that can effectively capture and describe behavioural patterns of interest. At each instant of the game, the spatial organization of teams and players mirror the collective and individual tactical options, which are related with fundamental game principles. For instances, the creation and occupation of space is associated with the players’ spatial organization in width and depth (movement of attacker players to extend and use the effective play-space).

The availability of players’ positional data, allied to a dynamical system theory approach (Glazier, Davids, & Bartlett, 2003; Glazier, 2010; Lebed, 2006; McGarry, Anderson, Wallace, Hughes, & Franks, 2002; McGarry & Franks, 2007; Reed & Hughes, 2006), allows studying teams’ tactical performance through spatial measures. Hence, current research has considered spatial team variables derived from players’ positional data, such as the surface area: area of the smallest convex set that contains all players of a team (Bartlett, Button, Robins, & Dutt-Mazumder, 2012; Bourbousson, Sève, & McGarry, 2010; Clemente, Couceiro, & Martins, 2012; Frencken & Lemmink, 2008; Frencken, Lemmink, Dellemann, & Visscher, 2011; Martins, Clemente, & Couceiro, 2013; Moura et al., 2013), the area of the bounding rectangle: area of the minimum unrotated rectangle that contains all players of a team (Lopes, Fonseca, Leser, & Baca, 2013), the stretch index: mean distance of teammates from the spatial centre (Bartlett et al., 2012; Bourbousson et al., 2010; Folgado, Lemmink, Frencken, & Sampaio, 2012; Okihara et al., 2004; Travassos, Araújo, Correia, & Esteves, 2010) and the Voronoi area: convex set that contains all players of a team, that can overlap, and therefore their area is not an accurate estimator of teams’ space dominance. Unlike this, the Voronoi diagrams (Voronoi, 1907), follow a method of construction that generates individual and exclusive cells in the field, each associated to a player, and for this reason, the application of this method has been privileged.

Recalling the game principles mentioned earlier, in a offensive sequence of a team sport of an invasive nature, attackers are expected to increase their play space, i.e., create width and depth and hence increase their covered area, while defenders, in response, concentrate and protect the goal area, covering less area in the field (Gréhaigne & Godbout, 2014). These principles are expected to be well captured by the Voronoi diagram. Thus, this investigation aims to assess how game principles are put into practice in a basketball game and how they can be identified by means of the percentage of Voronoi area (VA), which measures the percentage of area in the field occupied by each team.

Methods

Participants

Twenty (20) male basketball players from the national talents of Austria participated in this study (age: 16.05±2.09 years old, height: 183.10±5.88 cm, weight: 73.13±8.10 kg, trainings frequency per week: 7.25±1.29 times, 10.88±1.94 hours). A formal game, played in a 28m width×15m depth field, was video recorded and players’ trajectories were automatically extracted during the game by means of a radio wave based local positioning system (Leser, Schleindhuber, Lyons & Baca, 2014).

Sample

Following observational methodology procedures (Anguera & Hernández-Mendo, 2013), nineteen (19) sequences of positional attack (PA) of one team were extracted from the whole game. According to the two Portuguese basketball experts invited to collaborate in this study (Table 1), a valid sequence is characterized by the following criteria: (1) the observed team starts the sequence with ball possession in its midfield, (2) the ball is carried towards the basket, (3) all ten players must have crossed the midfield line, (4) after this there must be at least two interactions between the ball carrier and his teammates (5) the sequence finishes with an attempt to throw to the basket. The average length of the sequences was 15.1±3.73 seconds.

Cuadernos de Psicología del Deporte, vol. 15, n.º 1 (enero)
Table 1. Characterization of the experts invited to participate in the present study.

<table>
<thead>
<tr>
<th>Experts</th>
<th>Level</th>
<th>Experience (years)</th>
<th>Nationality</th>
<th>License type</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Youth</td>
<td>50</td>
<td>Portuguese</td>
<td>IV</td>
<td>69</td>
</tr>
<tr>
<td>B</td>
<td>Youth</td>
<td>15</td>
<td>Portuguese</td>
<td>III</td>
<td>39</td>
</tr>
</tbody>
</table>

Procedures

The percentage of VA of both teams was calculated at each frame of a sequence according to the following algorithm:

1. The coordinates of all players within an area of $28 \times 15m^2$ (court) are considered.
2. A grid of $0.1 \times 0.1m^2$ squares is superimposed over the court.
3. Each square in the grid is associated to the nearest player considering the distance of each player to its midpoint.
4. The VA of a player is given by the sum of the squares closer to him than to all other players.
5. The VA of a team is given by the sum of the VAs of all players of this team.
6. The percentage of VA of a team is calculated by the VA of that team divided by the total area.
7. The VA of the other team is the remaining percentage.

In order to distinguish patterns of different spatial organization, we followed the procedures described in Fonseca et al. (2013) to calculate reference values of the percentage of VA. Accordingly, the 95% confidence envelopes were determined based on 1,000 simulated patterns of complete spatial randomness (CSR), as an indicator of a transition phase (i.e., transition between defensive and offensive phases), also designated reorganization (Bayer, 1986; Gréhaigne, Godbout, & Bouthier, 1999; Mitchell, Oslin, & Griffin, 2006). The simulations were performed respecting the present set-up (game field dimensions of $28 \times 15m^2$ and five players per team) and the obtained 95% confidence limits were 31% and 69%. Thus, for a given time on a sequence, a percentage of VA within these values would be associated with a transition phase from an offensive phase (for which values would be above 69%) to a defensive phase (for which values would be below 31%).

Results

Next are presented the results from the analysis of the spatial organization of the teams in each sequence of positional attack (PA). The percentage of VA occupied by each team was calculated across the duration of each sequence and is plotted in the Figure 1 for all sampled sequences along with the 95% confidence envelopes for transition phase.

According to the invited experts, all basketball sequences of positional attack are divided in two moments: (1) a transition phase, which develops quickly as soon as ball possession is gained, until the midfield line is crossed by all players, followed by (2) an organized phase, played in a different pace, where players occupy specific positions in the field to prepare and start a set play. Theoretically, and based on the game principles, the spatial organization of the teams in these two phases is distinct, and it is possible to relate these with the observed values of the percentage of VA. Specifically, in the beginning of an offensive sequence, and before the midfield line is crossed by all players (transition phase), the percentage of VA of the attacking team is expected to be within the limits of the 95% confidence envelopes for CSR. After that (organized phase), the percentage of VA of the attacking team is expected to be greater than 69%, corresponding to a structured attacking phase.

In Figure 1, below, are shown the observed values of the percentage of VA of each team across the duration of each sequence (transition phase | organized phase) in our sample (n=19). These values are compared with the reference values from the 95% confidence envelopes for CSR.
Figure 1. Percentage of VA of the attacking team (black line) and the defending team (grey line) and 95% confidence envelopes (dashed lines) of each sequence of positional attack (n=19). The vertical black line marks the moment when all players crossed the midfield line.

Transition phase

Based on the plotted data (Figure 1), and before the midfield line has been crossed by all players (transition phase), three different patterns of spatial organization can be identified: (1) typically, this phase starts in the beginning of the sequence with values of the percentage of VA between 31% and 69% and this pattern is well observed in sequences A, B, C, D, F, J, M, N and R (Figure 1); (2) another pattern of transition is observed when a sequence starts with values of the percentage of VA of the attack below 31% (sequences E, G, I, L, O, P, Q and S); (3) the third pattern is observed when a sequence starts with values of the percentage of VA of the attacking team above 69% (sequences H and K).

Organized phase

The organized phase follows the transition phase. Based on the plotted data (Figure 1), during this phase the observed values of the percentage of VA of the attacking team are typically above 69%. This pattern was observed in all sampled sequences, although in some sequences these values were not constantly over 69% (sequences A, H, J, K and L), being temporarily within 31% and 69%.

Discussion

The current state of the art in analyzing the teams’ and players’ behaviour by means of different kinds of metrics (e.g. Bartlett et al., 2012; Davids & Araújo, 2010; Folgado et al., 2012; Frencken et al., 2011; Passos et al., 2011; Sampaio & Maçãs, 2012), is lacking a meaningful assessment of players’ and teams’ owned space (McGarry, 2009). The variables considered to characterize game behaviour are usually not taking into account the fundamental attributes of the match as well as its tactical principles (Lopes et al., 2013). In team sports, players of a team are distributed in the field according to a number of factors that determine their spatial organization. In the offense, for instance, players usually keep more distance between each other in order to cover more space, which yields to more opportunities for efficient actions. On the other hand, the defending team is more concentrated within a more confined area as defending players try to shorten the opportunities of the other team to score (i.e.: Bayer, 1984;
Based on this, the main purpose of the present study was to extend current knowledge on the use of spatial metrics, specifically those derived from the Voronoi diagrams, to characterize collective behaviour in team sports, particularly in basketball. According to our results, and considering the 95% confidence envelopes of the percentage of VA for CSR simulated patterns, [31, 69]%, it appears that the observed percentage of VA of the attack team allows to discriminate between transition phase (observed values of the percentage of VA within the confidence limits) and organized phase (observed values of the percentage of VA above the upper limit) during an offensive process, particularly in a positional attack. Further, we have identified specific patterns of spatial organization in each of these two phases, as presented in Table 2.

Table 2. Summary of the patterns identified for the transition and organized phase of the positional attack, and correspondence with the observed values of percentage of Voronoi area of the attacking team.

<table>
<thead>
<tr>
<th>Observed % of Voronoi area of the attacking team</th>
<th>Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition phase</td>
<td>Organized phase</td>
</tr>
<tr>
<td><31%</td>
<td>Delayed transition</td>
</tr>
<tr>
<td>[31, 69]%</td>
<td>Effective transition</td>
</tr>
<tr>
<td>> 69%</td>
<td>Rash transition</td>
</tr>
</tbody>
</table>

* Not Applicable

A Delayed transition occurs when the percentage of VA of the attack team is below the lower limit of the confidence envelope, 31%, in the beginning of the transition phase, indicating that the attacking team is still very concentrated and is in spatial disadvantage. As the attacking team gains ball possession, they try to free up space to progress in the field, while protecting the ball from the opponents. A Rash transition occurs when, soon after ball possession was gained (transition phase), the percentage of VA of the attack team is above the upper limit of the confidence envelope, 69%, in the beginning of the transition phase, indicating that the team has assumed spatial advantage in the field as soon as it gained ball possession. During the organized phase, the percentage of VA is typically above 69% (Structured attack) as the attacking team has optimized their play in width and depth. However, during this phase, observed values within the confidence limits ([31, 69]%) can occur and seem to be associated to specific actions, such as attempts to score, penetrations in the defensive structure and interception attempts. Lastly, Effective transition and Structured attack are the expected patterns in the transition phase and organized phase, respectively.

In general, the identified patterns are in accordance with tactical principles of the attack in basketball (Oliveira & Graça, 1998). The attacking team tends to play in depth and width to attract the defensive players away from central positions and/or locations near the basket, increasing progressively the percentage of VA in order to guarantee spatial advantage in the organized phase (Gréhaigne & Godbout, 2014). Although these findings look prominent, the limitations pointed out in previous studies should be taken into consideration (Fujimura & Sugihara, 2005; Taki, Hasegawa, & Fukumura, 1996; Fonseca et al., 2012 and Lopes et al., 2013) in future work. However, the percentage of VA has proven to be a spatial variable able to describe game contexts, players’ behaviour and eventually teams’ strategies.

Practical applications

In this paper we introduced the use of Voronoi diagrams in a basketball game for identifying specific moments in a game, particularly during positional attack sequences. The percentage of VA of a team appears to capture relevant information regarding a teams’ spatial organization, which is well associated with tactical rules being aware for this specific set-up. In an applied perspective, this approach may contribute not only for a better understanding of teams’ tactical behavior but also to save time in video analysis, as it allow to identify the period of time in the game where specific game phases occur and therefore get directly to the video clips which are worth to consider in a video session, giving coaches more time to prepare training plans and sessions in order to improve the tactical and strategic performance of their teams.

Acknowledgments

The first author gratefully acknowledges the support of the Spanish government project Observación de la interacción en deporte y actividad física: Avances técnicos y metodológicos en registros automatizados cualitativos-cuantitativos (Secretaría de Estado de Investigación, Desarrollo e Innovación del Ministerio de Economía y Competitividad) during the period 2012-2015 [Grant DEP2012-32124].
References

