Predictive factors of poor response to intravenous cyclosporine in steroid-refractory ulcerative colitis

J. W. Huamán Ríos, F. Casellas Jordá and J. R. Malagelada Benaprés

Unitat d’Atenció Crohn-Colitis. Digestive System Research Unit. University Hospital Vall d’Hebron, Barcelona, Spain. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd)

ABSTRACT

Background: the treatment of severe ulcerative colitis (UC) flares includes measures such as hospitalization and intravenous steroids. Despite this, a quarter of patients are refractory to treatment. Given the availability of new therapeutic strategies in patients with steroid-refractory UC (cyclosporine, infliximab, apheresis, surgery) it is necessary to predict which treatment will be most effective for each patient.

Objectives: to determine which clinical or biological factors discriminate the lack of response to cyclosporine in steroid-refractory UC.

Methods: forty one flares of steroid-refractory UC in 35 patients treated with intravenous cyclosporine have been included. The response to cyclosporine was assessed at day 10 of treatment by using the modified Truelove and Witts disease activity score. Variables with prognostic significance were determined by a univariate analysis comparing groups with complete response and no-response, and an analysis of multiple linear regression.

Results: complete response was obtained in 41 flares (48%), partial response in 22%, and lack of response in 29%. The univariate analysis showed a significant difference in four predictive factors: higher age (p = 0.008), thrombocytosis (p = 0.01), disease extent (pancolitis vs. left-sided disease (p = 0.04)), and having received cyclosporine previously (p = 0.01). A multiple linear regression analysis confirmed the significance of higher age, thrombocytosis, and having received cyclosporine previously as predictive factors of poor response.

Conclusion: higher age, thrombocytosis and previous use of cyclosporine predispose to poor response to intravenous cyclosporine in severe flares of steroid-refractory UC.

Key words: Cyclosporine. Ulcerative colitis. Steroid refractory. Predictive factors.

INTRODUCTION

Ulcerative colitis (UC) is a chronic colonic immunoinflammatory disease characterized by periods of remission alternating with flares of variable activity with diarrhea, blood in stools, abdominal pain, and fever (1,2).

About 15% of patients with a UC flare-up will require admission to hospital and be treated with intravenous corticosteroids (3,4). Although intravenous corticosteroids are very effective, 20 to 47% of severe relapses need colectomy (5,6).

Since 1994 cyclosporine A (CyA) has been shown to be effective in reducing the need of colectomy in patients with severe UC refractory to corticosteroid treatment (7). However, 70% of patients who initially had a good response to CyA will require colectomy in the following 6 to 12 months (8). In addition, CyA treatment is related to frequent adverse effects, such as hypertension or renal insufficiency (9,10). Nowadays there are alternative strategies to CyA in severe relapses of UC refractory to corticosteroids, such as infliximab (11-16) or leukocytapheresis (17-19). Consequently, it is necessary to have easy indicators that allow to rapidly decide the therapeutic strategy in severe UC flares.

Several studies have established some predictors of severe UC non-responsive to intravenous corticosteroids: more than 8 stools/day, heart frequency higher than 100 pm, body temperature over 38 °C, serum albumin lower to 3 mg/dl or lack of normalization of C-reactive pro-
tein (20,21). However, there is scarce information relative to which factors can rapidly predict which patients with severe cortico-refractory UC will improve with CyA (22).

The main objective of the present study has been to rapidly determine which clinical or biological factors can identify patients with severe cortico-refractory UC that will not respond to CyA.

MATERIAL AND METHODS

Patients

The clinical records of patients with severe UC treated with intravenous CyA admitted to Service of Digestive Diseases, University Hospital Vall d’Hebron, Barcelona (Spain), during the period 2000-2006 were reviewed. None of these patients responded to intravenous corticosteroids at a dose of 1 mg/kg during 1 week.

The diagnosis of UC was based on conventional clinical, endoscopic, and histological criteria (23-25).

UC severity was determined according to the modified clinical index by Truelove-Witts (mTLW) (26,27): scores of nine items were summed to obtain an index of remission (score lower to 11), mild activity (score from 11 to 15), moderate activity (score from 16 to 21), and severe activity (score between 22 and 27).

Procedure

Cyclosporine administration

When CyA was initiated the previous dose of corticosteroids was not changed. CyA was administered intravenously at a dose of 4 mg/kg/day in two daily doses given in 250 ml of 5% glucosate fluid for 4 hours (28). The dose was adjusted according to CyA serum levels at 48 hours (normal CyA levels: 100-400 ng/ml, determined by RIA). In case of good response, defined as a decrease in mTLW of at least 10 points, CyA was changed to oral administration (5 mg/kg/day) for three months (29). Serum CyA levels were monitored weekly during admission and monthly during follow-up in the outpatient clinic. Oral azathioprine (2-2.5 mg/kg/day) was added, and lab controls were done periodically.

Collection of disease related variables

In all patients data collected included demographic variables (age, sex, smoking habit (nonsmoker, smoker, former smoker), family history of inflammatory bowel disease). Disease characteristics: extension - pancolitis vs. left-sided colitis (30), duration in months, number and severity of previous flares, number of previous admissions, number of blood transfusions, need of corticosteroids, immunosuppressants, antibiotics, and CyA in previous flares). Characteristics of present relapse: temperature, heart rate, number of bowel movements, abdominal pain severity, rectal syndrome, presence of deep ulcers during sigmoidoscopy, mTLW, extraintestinal manifestations, number of blood transfusions, body weight, laboratory – hemoglobin, leukocytes, non-segmented neutrophils, globular sedimentation rate, fibrinogen, C-reactive protein, fibrinogen, platelet count, albumin and fecal *Clostridium difficile* toxin at CyA onset.

The complications of CyA were also recorded as minor or major (31). For major complications CyA was withdrawn, and for minor complications CyA dosage was adjusted.

Response criteria

According to clinical response to CyA at day 10, three groups of patients were defined: absence of response to treatment, defined as lack of clinical improvement (decrease of 5 or fewer points in mTLW after 10 days of treatment). Partial response, defined as a decrease in mTLW score > 5 points but without reaching remission. Complete response, defined as clinical remission (mTLW score lower than 11) after 10 days of treatment.

Statistical analysis

Clinical cards were exported to an Excel workbook. Statistical analyses were performed by using the statistics program GraphPad InStat. To compare qualitative variables the exact Fischer’s test was used. To compare quantitative variables the Mann-Whitney test was used. Statistically significant differences were considered when p < 0.05. Variables statistically different between responsive and non-responsive groups in the univariate analysis were included in a multiple linear regression analysis to identify independent predictive factors of poor response to treatment with CyA.

RESULTS

The clinical characteristics of patients are shown in table I. Thirty-five patients with severe UC refractory to steroids who received cyclosporine intravenously were included. Six patients also received CyA previously in other flares. Thus, a total of 41 flares were studied. Fifteen patients (42.8%) were female. Median age was 34 (26-40) years at admission. Five patients (14.3%) were smokers and 21 (60%) were non-smokers. Eight patients were on maintenance treatment with azathioprine (22.9%).

A complete response to CyA after 10 days of treatment was achieved in 20/41 flares (48.8%), a partial response
Factors associated with absence of clinical response

To determine which epidemiological, clinical or biological parameters could shortly predict absence of response to intravenous CyA, different variables were used (Table IV). A univariate analysis between patients with complete response and absence of response was performed (Table V) to identify subjects to be included in a subsequent multivariate analysis.

Patients with complete response were younger than those with absence of response (30 (24-40) years vs. 40 (34-42), p < 0.001). Sex, smoking, maintenance treatment, and disease duration before inclusion did not influence response to intravenous CyA. On the other hand, colitis extent (pancolitis vs. left-sided colitis), thrombocytosis, and a history of previous treatment with intravenous CyA in other flares were significantly associated (p < 0.05) with absence of response to CyA.

Table VI shows the results of the multiple linear regression test. Independent predictive variables of short absence of response to CyA in severe UC refractory to corticosteroids included age (p = 0.02), previous intravenous CyA (p = 0.05), and platelet count (p = 0.03). According to these results, older patients with a history of previous treatment with CyA and thrombocytosis during the present flare-up would be the poorest responders to CyA.

Table IV. Variables analyzed at the beginning of CyA treatment according to response to treatment

<table>
<thead>
<tr>
<th></th>
<th>Complete response</th>
<th>Partial response</th>
<th>No response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>9/11</td>
<td>3/6</td>
<td>4/8</td>
</tr>
<tr>
<td>Age</td>
<td>30 (24-40)</td>
<td>35 (26-38)</td>
<td>40 (34-42)</td>
</tr>
<tr>
<td>Extension (left/pan)</td>
<td>9/11</td>
<td>2/7</td>
<td>1/11</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>30.4 (34-48)</td>
<td>34.2 (2-42)</td>
<td>41 (1-48)</td>
</tr>
<tr>
<td>Previous CyA</td>
<td>1/9</td>
<td>1/8</td>
<td>4/8</td>
</tr>
<tr>
<td># bowel movements</td>
<td>5 (4.0-6.5)</td>
<td>7 (6-8)</td>
<td>6 (4.7-7.0)</td>
</tr>
<tr>
<td>Temperature</td>
<td>36.5 (36.2-36.8)</td>
<td>37.2 (36.8-37.5)</td>
<td>36.7 (36.4-37.0)</td>
</tr>
<tr>
<td>Heart rate</td>
<td>76 (70-88)</td>
<td>96 (84-105)</td>
<td>77 (70-83)</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>10.8 (8.5-12.2)</td>
<td>10.6 (8.2-12.1)</td>
<td>10.7 (8.3-12.5)</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>9,250</td>
<td>10,800</td>
<td>9,700</td>
</tr>
<tr>
<td>No segment (Yes/No)</td>
<td>7/13</td>
<td>4/5</td>
<td>9/9</td>
</tr>
<tr>
<td>ESR</td>
<td>45 (33.8-54.0)</td>
<td>50 (38.1-69.0)</td>
<td>56 (44.5-64.5)</td>
</tr>
<tr>
<td>CRP</td>
<td>2.9 (2.6-3.4)</td>
<td>7.8 (4.7-10.0)</td>
<td>3.8 (2.4-5.1)</td>
</tr>
<tr>
<td>Platelets (10^3)</td>
<td>334 (289-427)</td>
<td>474 (341-540)</td>
<td>472 (418-506)</td>
</tr>
<tr>
<td>Albumin</td>
<td>2.9 (2.6-3.2)</td>
<td>2.5 (2.3-3.6)</td>
<td>2.8 (2.7-3.0)</td>
</tr>
<tr>
<td>mTLW</td>
<td>23 (22-24)</td>
<td>24 (22-25)</td>
<td>24 (22-26)</td>
</tr>
</tbody>
</table>

Table V. Univariate analysis

<table>
<thead>
<tr>
<th></th>
<th>Complete response</th>
<th>Absence response</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (M/F)</td>
<td>9/11</td>
<td>4/8</td>
<td>0.7</td>
</tr>
<tr>
<td>Age</td>
<td>30 (24-40)</td>
<td>40 (34-42)</td>
<td>0.008*</td>
</tr>
<tr>
<td>Extension (left/pan)</td>
<td>9/11</td>
<td>1/11</td>
<td>0.04*</td>
</tr>
<tr>
<td>Duration (months)</td>
<td>30.4 (34-48)</td>
<td>41 (1-48)</td>
<td>0.1</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>4/16</td>
<td>2/10</td>
<td>0.4</td>
</tr>
<tr>
<td>Previous CyA</td>
<td>1/9</td>
<td>4/8</td>
<td>0.01*</td>
</tr>
<tr>
<td># bowel movements</td>
<td>5 (4.0-5.3)</td>
<td>6 (4.7-7.0)</td>
<td>0.07</td>
</tr>
<tr>
<td>Temperature</td>
<td>36.5 (36.2-36.8)</td>
<td>36.7 (36.4-37.0)</td>
<td>0.1</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>10.8 (8.5-12.2)</td>
<td>10.7 (8.3-12.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>Leukocytes</td>
<td>9250</td>
<td>9700</td>
<td>0.8</td>
</tr>
<tr>
<td>No segment (Yes/No)</td>
<td>7/13</td>
<td>3/9</td>
<td>0.7</td>
</tr>
<tr>
<td>ESR</td>
<td>45 (33.8-54.0)</td>
<td>56 (44.5-64.5)</td>
<td>0.3</td>
</tr>
<tr>
<td>CRP</td>
<td>2.9 (2.6-3.4)</td>
<td>3.8 (2.4-5.1)</td>
<td>0.3</td>
</tr>
<tr>
<td>Platelets (10^3)</td>
<td>334 (289-427)</td>
<td>472 (418-506)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Albumin</td>
<td>2.9 (2.6-3.2)</td>
<td>2.8 (2.7-3.0)</td>
<td>0.5</td>
</tr>
<tr>
<td>mTLW</td>
<td>23 (22-24)</td>
<td>24 (22-25)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Results are expressed as medians; * = statistically significant.
DISCUSSION

There is important evidence supporting the efficacy of CyA in the treatment of UC refractory to corticosteroids, with a range of responses between 60 and 85% (7,32-36). In our study, clinical remission was achieved in about half of patients, a result that we consider excellent as it was determined after only 10 days of treatment. Other studies analyzing the results of CyA in refractory UC after two weeks or three months of treatment have described better results, suggesting that length of treatment with CyA is important in determining efficacy.

Several studies have identified predictive factors for lack of response to intravenous corticosteroids: severe endoscopic lesions, C-reactive protein higher than 45 mg/L after 3 days of intensive treatment, more than 8 bowel movements per day, toxic megacolon, low albumin levels, and long duration of present flare (20,37-39). However, there is scarce information on predictive factors for response to CyA. Our study has identified three predictors of poor response to CyA, one biological (thrombocytosis) and 2 epidemiological (age and history of previous treatment with CyA) in nature.

Rowe et al. (40), in a retrospective study of 36 patients, identified three predictive factors of absence of response to CyA: tachycardia, hypoalbuminemia, and increase in non-segmented neutrophils. More recently two studies have been reported that looked at predictive factors for response to CyA. Cacheux et al. (41) identified three variables (tachycardia, fever, and C-reactive protein higher than 45 mg/dl) as predictive factors for colectomy. Aceituno et al. (42) revealed an association of need for colectomy with increased levels of C-reactive protein.

The lack of consistency between predictors identified in our study and those published by other studies may be due to the fact that we decided to assess response to treatment after only 10 days, and due to study design limitations (retrospective study, no colonoscopic controls) (43). Colonoscopy was not performed in all patients at inclusion because of the risk for complications in these subjects. Consequently, our study does not include colonic mucosa appearance as a potential predictive factor.

In conclusion, three predictors of absence of response to CyA in UC patients refractory to corticosteroids have been identified: thrombocytosis, older age, and a history of previous treatment with CyA. In these cases other therapeutic alternatives have to be considered, although no guidelines may be suggested from this study.

REFERENCES

