Sensitivity and specificity of the Gastrointestinal Short Form Questionnaire in diagnosis of gastroesophageal reflux disease

Carlos Teruel-Sánchez-Vegazo1, Vicenta Faro-Leal1, Alfonso Muriel-García2 and Norberto Mañas-Gallardo3

Departments of 1Gastroenterology and 2Biostatistics. Hospital Universitario Ramón y Cajal. Madrid, Spain. 3Service of Gastroenterology. Hospital Madrid Norte Sanchinarro. Madrid, Spain

ABSTRACT

Introduction: Gastrointestinal Short Form Questionnaire (GSFQ) is a questionnaire for gastroesophageal reflux disease (GERD) diagnosis, with a version in Spanish language, not yet compared to an objective test.

Aims: To establish GSFQ diagnostic performance against 24-hour pH monitoring carried out in two tertiary care hospitals.

Methods: Consecutive adult patients with typical GERD symptoms (heartburn, regurgitation) referred for pH monitoring fulfilled the GSFQ (score range 0-30, proportional to probability of GERD). Diagnosis of GERD was established when acid exposure time in distal esophagus was superior to 4.5% or symptom association probability was greater than 95%. Receiver-operator characteristic (ROC) curves were calculated and best cut-off score determined, with corresponding sensitivity, specificity and likelihood ratios (LR) (95% confidence interval for each).

Results: One hundred and fifty-two patients were included (59.9% women, age 47.9 ± 13.9; 97.4% heartburn; 71.3% regurgitation). pH monitoring was abnormal in 65.8%. Mean GSFQ score was 11.2 ± 6. Area under ROC was 56.5% (47.0-65.9%). Optimal cut-off score was 13 or greater: sensitivity 40% (30.3-50.3%), specificity 71.2% (56.9-82.9%), positive LR 1.39 (0.85-2.26) and negative LR 0.84 (0.67-1.07). Exclusion of questions 1 and 3 of the original GSFQ, easily interpreted as referred to dyspepsia and not GERD, improved only marginally the diagnostic performance: AUROC 59.1%.

Conclusion: The GSFQ does not predict results of pH monitoring in patients with typical symptoms in a tertiary care setting.

Key words: Gastroesophageal reflux disease. Ambulatory pH monitoring. Sensitivity. Specificity.

INTRODUCTION

Gastroesophageal reflux disease (GERD) is defined by the Montreal consensus as the troublesome signs and symptoms caused by reflux of gastric content (1). It is one of the most prevalent gastrointestinal diseases worldwide, with an estimated prevalence of 10-20% in Western countries, 15% in Spanish adult population (2,3). GERD impacts quality of life and causes an important economic burden to health-care systems due to over-the-counter or prescribed medication, diagnostic procedures and work absenteeism (4,5).

In spite of such prevalence its diagnosis still supposes a challenge in many cases, as many patients suffer from atypical symptoms (chronic cough, asthma, laryngitis, etc.) and there is no gold standard test that can serve as a universal reference. Typical symptoms, heartburn and regurgitation, do not correlate well with objective findings in endoscopy (erosive esophagitis or Barrett metaplasia) or in pH monitoring tests, as it does not the response to a proton pump inhibitor (PPI) test (6-8). On top of that, pH monitoring, theoretically the most reliable diagnostic test, is expensive, not widely available and its performance is usually not optimal as false negative results are frequent (9). To overcome these difficulties in diagnosing GERD, in the past two decades several questionnaires have been developed to diagnose it, to quantify its severity and to monitor response to treatment. In fact, they are frequently used as outcome measures in many randomized control trials (10). Most of them have either not been compared to other diagnostic tests such as endoscopy or pH monitoring or have a poor specificity when they have been (8,10). The most studied one, the Gastroesophageal Disease Questionnaire (GerdQ), has fine sensitivity and specificity, and a management strategy based on its application in primary care has proven to be as useful, and even cheaper, as the classical approach based on endoscopy and pH monitoring (11-14).

In this context, in 2003 a Canadian group developed the Gastrointestinal Short Form Questionnaire (GSFQ), a self-administered 6-item symptom-frequency survey (15). Although not widely used, it is very easy to fulfill and is one of the few available GERD questionnaires with a
validated Spanish version (16). Not compared yet with an objective diagnostic test for GERD to our knowledge, it has a potential utility in GERD diagnosis in our setting. The objective of the present study is to compare GSFQ scores with the results of ambulatory 24 hour pH monitoring and determine if this diagnostic tool could have a place in clinical management of GERD patients. The main hypothesis is that higher scores will correlate most with the probability of a pathological result of the pH monitoring.

MATERIAL AND METHODS

Patients

Consecutive adult patients referred to the Gastrointestinal Motility units of the two participating hospitals in Madrid, Spain, between January 2012 and December 2013 to undergo 24-hour pH monitoring because of suspicion of GERD due to typical symptoms (heartburn and/or regurgitation) were asked to participate. We excluded those with alarm symptoms (anemia, unintentional weight loss, progressive dysphagia or signs of gastrointestinal bleeding), those with previous anti-reflux surgery and those who could not understand the language well enough to be able to fulfill the questionnaire. Coexistence of chest pain or extraesophageal symptoms was allowed, but we excluded those patients whose dominant symptom was not heartburn or regurgitation and those who had chest pain or extraesophageal symptoms exclusively. All patients gave written informed consent.

Ambulatory pH monitoring

After an overnight fast and after withdrawing PPI or H2 antagonists for at least 7 and 4 days respectively (studies off medication), a pH monitoring probe (Versaflex® and Geroflex®, Given Imaging) was placed transnasally fixing the transducer 5 cm above the upper border of the lower esophageal sphincter (LES) as localized with previous esophageal manometry. Data was recorded digitally (Digitrapper Mark III®, Synectics; Digitrapper PH400®, Medtronic; Digitrapper PHZ®, Given Imaging) and analyzed with dedicated software (Polygram®, Gastrotrac® and Accuveiw® respectively). Patients were instructed to follow their daily routines normally including their normal diet, to avoid any drug that could alter normal gastric acidity and to register meal and recumbent periods as well as any heartburn or regurgitation events they felt during the study period.

All patients underwent an esophageal manometry at least to localize the upper border or the LES. Complete manometry was carried out only if it was requested by the referring physician. It was performed using 4 lumen water-perfused catheters (MUI Scientific) connected to a polygraph and analyzed with dedicated software (Polygram® or Gastrotrac®). LES basal pressure was determined as the occurrence of a mean peristaltic wave amplitude in the two distal channels less than 30 mmHg or interrupted waves. Diffuse esophageal spasm was defined as the occurrence of 20% or more of simultaneous contractions with amplitude higher than 30 mmHg. Hypertensive peristalsis was defined as the occurrence of a mean peristaltic wave amplitude in the two distal channels higher than 180 mmHg.

Results of pH monitoring and manometry were interpreted by authors CT, VF and NM, all experienced in performance of esophageal function tests.

The 24-hour pH monitoring was considered diagnostic of GERD if esophageal acid exposure time (AET) was higher than 4.5% of total recorded time or if AET was < 4.5% but symptoms (regurgitation or heartburn) were significantly associated with the occurrence of acid reflux episodes (hypersensitive esophagus). Symptom-reflux association was analyzed using the Symptom Association Probability (SAP), a statistical test in which the pH study is divided in 2 minutes intervals and presence or absence of reflux and symptomatic events is counted. A 2 x 2 table is generated and a two-tailed Fisher’s exact test applied. SAP > 95% (p < 0.05) indicates a significant, not random association between symptoms and reflux episodes (17). Only patients that presented three or more events of the same type (heartburn or regurgitation) were considered for symptom-reflux association analysis. If a patient presented three or more episodes of heartburn and three or more episodes of regurgitation, the symptom-reflux association was considered positive if SAP was higher than 95% for at least one of them. Extraesophageal symptoms patients reported were not considered for the analysis.

GSFQ fulfillment

Patients were asked to read and complete the questionnaire (Fig. 1) before placement of the pH monitoring catheter. Any doubts they had were solved. The questionnaire refers to the previous week and includes six items, 4 about frequency of occurrence of several symptoms and interference with diet and daily activities, and two about the number of days or nights in the previous week in which daily activities or sleep respectively were disturbed by GERD symptoms. The first four items are scored using a Lickert scale (0 none of the time, 4 all of the time) while the last two are scored with one point for each day or night affected (0 none, 7 all days or nights in the previous week), to make a composite score that ranges from 0 (no reflux) to 30 (maximal clinical disturbance due to reflux symptoms).

Other diagnostic procedures

If patients had undergone an esophagogastroduodenoscopy (EGD) prior to pH monitoring, its result was registered, namely the presence of erosive esophagitis, graded with the Los Angeles classification (18), or Barrett esophagus.

GSFQ diagnostic power determination

Receiver operator characteristic (ROC) curves and their 95% confidence interval were used to calculate optimum cut-off values (maximal trade-off between sensitivity and specificity) to evaluate the ability of the GSFQ to discriminate between patients with and
without objectively measured acid reflux in the pH monitoring study as defined previously (total AET > 4.5% or positive symptom-reflux association). We estimated sensitivities, specificities, positive and negative likelihood ratios (LR+ and LR- respectively) and the area under the curve (AUROC). Additionally, we estimated the same parameters using the GSFQ score of 12 or more, which was reported by Ruiz-Díaz MA et al. as the optimal cut-off value, with an estimated sensitivity of 60.5% and specificity of 68.3% (16).

On the other hand, questions 1 and 3 of the GSFQ refer to symptoms localized in the “upper abdomen” or “stomach”, so dyspeptic symptoms and no proper GERD symptoms could be referred to by patients when answering these questions, underpowering thus the questionnaire’s ability to diagnose GERD. In view of this a priori assumption, we performed a second diagnostic analysis of the GSFQ excluding those two questions to ascertain if the remaining four had indeed a diagnostic power that was undermined when scoring the questionnaire including all 6 questions as originally conceived.

In this “short version” of the GSFQ the maximum score would be 22. We finally carried out a sub-analysis including as patients with objective GERD also those who had undergone an EGD, had normal pH monitoring parameters but presented peptic esophagitis.

Sample size was estimated presuming a GERD prevalence of 54% (obtained by reviewing results of all pH monitoring carried out in the previous 3 months in the participating units), a required sensitivity of 95 ± 5% and an alpha error of 0.05. We obtained a number of 146 subjects. Assuming a 10% of losses attributable to technical problems in data acquisition or any other circumstances that could avoid a reliable analysis of the pH monitoring, a final sample size of 160 was established.

Data are expressed for quantitative variables as mean and standard deviation when normally distributed or as median and range when not, and as proportions for qualitative variables with corresponding 95% confidence intervals when suitable. All test results with a p value < 0.05 were considered as statistically significant. Statistical analyses were completed using STATA version 13.1 (StataCorp).

Ethical considerations

The study was approved by the Clinical Investigation Ethical Board of both participating centers.

RESULTS

Characteristics of patients

A total of 160 patients were included. Eight were finally excluded because of technical failure during pH monitoring that avoided an optimal and confident analysis of the results. Characteristics of the remaining 152 are described in table I.

Patients complained of heartburn (97.4%) or regurgitation (71.3%) as their main symptom, alone or in combination with the other symptoms detailed in table I.
Endoscopic findings

Of the 152 patients who entered the study, 133 had undergone EGD before pH monitoring (Table I). The endoscopy revealed no relevant findings in 43.6%, hiatal hernia in 50.4%, esophageal ring in 3.8%, esophagitis in 22.6% (grade A, 8.3%; grade B, 10.5%; grade C, 3% and grade D, 0.8%) and Barrett esophagus in 7.5%.

Manometrical findings

Esophageal manometry was carried out in 133 patients. Weak peristalsis was detected in 41 of them (30.8%), hypertensive peristalsis in 3 (2.3%) and unspecified motor disorder in 1 (0.8%). LES median (range) resting pressure was 10 mmHg (3.36).

pH recordings

The median (range) percent of total AET was 6.6% (0.1, 48). Abnormal AET was noted in 94 patients (61.8%). Of the remaining patients with normal AET, 32 registered symptoms. Six of them had at least three symptoms and scored a positive SAP. Therefore, a total of 100 patients (65.8%) had an objective diagnosis of GERD by pH monitoring.

GSFQ scores

The mean (SD) GSFQ score was 11.2 (6.0). The AUROC was 56.5% (95% CI: 47.0-65.9%), which indicates that GSFQ scores do not make a statistically significant discrimination between normal and pathological acid reflux (AUROC of 50% indicates that the test is not better than a coin toss in determining whether the disease is present or not). Optimal cut-off value was 13 or higher, with a sensitivity of 40.0% (95% CI: 30.3-50.3%), a specificity of 71.2% (95% CI: 56.9-82.9%), a LR+ of 1.39 (95% CI: 0.85-2.26) and a LR- of 0.84 (95% CI: 0.67-1.07). For the 12 points cut-off value proposed by Ruiz-Díaz MA et al. (16), the numbers were worse: sensitivity 47.0%, specificity 55.8%, LR+ 1.06 and LR- 0.95.

Of the 133 patients who had undergone an EGD, 93 had pathological pH monitoring (30 had also esophagitis) and 5 had esophagitis with normal pH recordings. Adding these together we obtained a total of 98 patients (73.7% of the 133) who had objective signs of GERD as defined in a post-hoc analysis. Using this as new gold standard we obtained an AUROC of 59.0% (95% CI: 48.7-69.3%) with an optimal cut-off score of 13 or more for a sensitivity of 39.8% (95% CI: 29.8-50.5%), a specificity of 82.5% (95% CI: 67.2-92.7%), a LR+ of 2.27 (95% CI: 1.11-4.66) and a LR- of 0.73 (95% CI: 0.59-0.91).

Exclusion of questions 1 and 3 improved diagnostic power minimally, obtaining an AUROC of 59.1% (49.7-68.5%). In the “short version” of the questionnaire (score range 0-22) the optimal cut-off score was 9 or higher, with a sensitivity of 34.0% (95% CI: 24.8-44.2%), specificity of 82.7% (95% CI: 69.7-91.8%), a LR+ of 1.96 (95% CI: 1.02-3.78) and LR- of 0.66 (95% CI: 0.57-0.74). When we analyzed only the 133 patients with EGD, AUROC for the “short version” was 53.9% (95% CI: 43.4-64.4%). This time the optimal cut-off value was 8 or higher, with a sensitivity of 36.6% (95% CI: 26.8-47.23%), a specificity of 77.5% (95% CI: 61.5-89.2%), a LR+ of 1.62 (95% CI: 0.86-3.06) and a LR- of 0.73 (95% CI: 0.65-1.03).

In table II we summarize all diagnostic power analysis of GSFQ we have performed.

DISCUSSION

GERD is a highly prevalent disease with which not only gastroenterologists but also primary care physicians have to deal with. In spite of its prevalence and relatively straightforward pathophysiology, making a precise diagnosis is sometimes a challenge, especially when we face patients we believe suffer from GERD but do not respond to PPI, the best medical option, or when we are considering anti-reflux surgery.

Invasive tests, mainly EGD and 24 hour pH monitoring, offer the most potent diagnostic capacity based on their high specificity: if a patient has peptic esophagitis or a...
pathological acid exposure time, that patient has indeed GERD. However, these tests are uncomfortable, expensive and their sensitivity can be disappointing. EGD is frequently normal (up to 50% of cases) in patients with typical symptoms, being unable to distinguish between non-erosive reflux disease (NERD) or functional heartburn (8,9), and up to a third of patients with established disease as defined by the presence of peptic esophagitis that undergo pH monitoring have normal pH monitoring parameters (9,11).

Most physicians will manage GERD patients initially on a purely clinical workout basis. Indeed, recent guidelines recommend treating directly with PPIs those patients that have typical symptoms and no alarm signs (19). However, several studies have pointed out that basing diagnosis of GERD on the sole presence or absence of these symptoms is very inaccurate, with low sensitivity and slightly better specificity (6,8,20). The PPI test is also imperfect, with acceptable sensitivities but low specificities as functional heartburn is very inaccurate, with low sensitivity and slightly better specificity (8,9). Up to a third of patients with established GERD made by EGD, pH-monitoring or response to PPI scores should be prescribed PPI confidently, while invasive tests (EGD and pH monitoring) would be reserved for those with low scores.

GSFQ is a similar questionnaire (self-administered, simple, 6-item based) of which we have a validated translated version in Spanish, and could perform as good or better than GerQ in aiding gastroenterologists and primary care practitioners in GERD bench-side diagnosis and management. We designed the present study to analyze its diagnosis power using a 24 hour pH monitoring as gold standard. Results indicate however that GSFQ does not perform significantly better than chance in discriminating patients with objective GERD from those without. In a post hoc analysis we expanded the gold standard diagnosis criteria using EGD results to avoid potential pH monitoring false negatives, but sensitivity, specificity and likelihood ratios were similar.

GSFQ questions 1 and 3 refer to vaguely described symptoms localized in the upper abdomen that could be easily referred to by patients with dyspeptic and not GERD symptoms. Actually, the investigators that elaborated the GerQ took into account this GERD-dyspepsia dichotomy and introduced in the final version of the questionnaire two questions that referred to typical dyspeptic symptoms, giving them a negative value, so that patients that reported those symptoms were interpreted as having less probably GERD (12). We decided consequently to make a sub-analysis omitting questions 1 and 3 to determine if exclusion of this possible confusion element would enhance the diagnostic capacity of the questionnaire indeed. The “short version” however did not achieve a significantly better diagnostic performance.

The present study has several disadvantages. First of all, establishing pH monitoring as the unique gold standard means that false negative results could diminish GSFQ real power. We tried to overcome this difficulty expanding the parameters that define objective GERD, so not only a high AET defined GERD but also a positive symptom-reflux association as determined by SAP, a criterion widely used in similar studies (11-14). We were stricter than others in determining a positive association as we required a presence of at least three symptomatic episodes. It has been shown that with a lower number of symptoms SAP performance is less consistent (23). We did not use

<table>
<thead>
<tr>
<th>Table II. Summary of all diagnostic performance calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSFQ ≥ 13</td>
</tr>
<tr>
<td>AUROC* (95% CI†)</td>
</tr>
<tr>
<td>Sensitivity (95% CI†)</td>
</tr>
<tr>
<td>Specificity (95% CI†)</td>
</tr>
<tr>
<td>LR+ (95% CI†)</td>
</tr>
<tr>
<td>LR- (95% CI†)</td>
</tr>
</tbody>
</table>

*pvGSFQ: “Short version” of the Gastrointestinal Short Form Questionnaire (questions 1 and 3 excluded); †pH/EGD: Diagnosis of GERD based on results of esophagogastroduodenoscopy (EGD) as well as on those of pH monitoring; *AUROC: Area under receiver-operator characteristic curve; †95% CI: 95% confidence interval; ‡LR+: Positive likelihood ratio; ‡LR-: Negative likelihood ratio.
impedance monitoring, what could have also increased false negatives as non-acidic reflux remained undetected. However, pH-impedance monitoring performs better than conventional pH monitoring mainly when studies are undertaken “on treatment” with PPI, as non-acidic refluxes become predominant in such conditions (24). Besides, 24-hour pH monitoring is much more available in our setting than pH-impedance studies, so we consider that exploring GSFQ diagnostic power against it is of interest. We point out in any case that 65.8% of patients in the present study had objective GERD as determined by pH monitoring (73.7% when adding esophagitis with normal pH-metry), a much higher proportion than that initially estimated, what makes us consider that probably the false negative rate is not high anyhow.

Another drawback is that both participating units belong to tertiary hospitals, where patients are not representative of usual primary care patients. In our setting the proportion of PPI-refractoriness, functional heartburn and concurrence of atypical symptoms is presumably higher. We cannot therefore extrapolate our results to a primary care population having “upper digestive symptoms” (analog to that where GerDQ was tested), in which it is possible that the questionnaire yielded a better diagnostic performance. From this point of view, our study is in our opinion comparable to that of Lacy BE et al., which compared GerDQ to 48 hour pH monitoring carried out in a tertiary hospital. Their results were, noticeably, very similar to ours (AUROC 61%, sensitivity 43%, specificity 75%) (25). In any case, the high specificity we detect could anyhow make GSFQ useful in a diagnostic strategy similar to that tested for GerDQ by Jonasson C et al. and Berquist H et al. (13,14) (patients with high scores will be treated and those with low scores will be tested further). This hypothesis should be explored in specifically designed future studies, preferably in primary care settings.

In light of these results we conclude that GSFQ as originally designed is not a useful tool in a tertiary care setting for diagnosing GERD as defined by 24-hour pH monitoring. We believe that any GERD questionnaire should be tested against the most objective diagnostic tools (mainly pH monitoring with or without impedance) to establish its real diagnostic precision before one could recommend its widespread use.

REFERENCES