Patient-Centered Prescription Model to improve therapeutic adherence in patients with multimorbidity

Abstract

To date, interventions to improve medication adherence in patients with multimorbidity have shown modest and inconsistent efficacy among available studies. Therefore, we should define new approaches aimed at improving medication adherence tailored to effective prescribing, with a multidisciplinary approach and patient-centered. In this regard, the Patient-Centered Prescription Model has shown its usefulness in improving appropriateness of drug treatments in patients with clinical complexity. For that, this strategy addresses the following four steps: 1) Patient-Centered assessment; 2) Diagnosis-Centered assessment; 3) Medication-Centered assessment; and 4) Therapeutic Plan. We propose through a clinical case an adaptation of the Patient-Centered Prescription Model to enhance both appropriateness and medication adherence in patients with multimorbidity. To this end, we have included a tool for multidimensional assessment of medication adherence. Furthermore, we suggest a set of interventions to be applied in the three remaining steps of the model. These interventions were firstly identified by an overview of systematic reviews and then selected by a panel of experts based on Delphi methodology. All of these elements have been considered appropriate in patients with multimorbidity according to three criteria: strength of their supporting evidence, usefulness in the target population and feasibility of implementation in clinical practice. The proposed approach intends to lay the foundations for an innovative way in tackling medication adherence in patients with multimorbidity.

Resumen

Según los estudios disponibles, la eficacia de las intervenciones para mejorar la adherencia terapéutica en pacientes con multimorbilidad es limitada e inconsistente; por ello, debemos definir nuevos modelos de intervención que incorporen como elementos clave la atención centrada en la persona, el abordaje interdisciplinar y la orientación a la mejora de la adecuación terapéutica. En este sentido, el Modelo de Prescripción Centrado en la Persona ha demostrado su capacidad para adecuar la prescripción a las necesidades de pacientes con complejidad clínica. Para ello, incorpora cuatro etapas consecutivas: 1) valoración centrada en el paciente; 2) valoración centrada en el diagnóstico; 3) valoración centrada en el fármaco, y 4) propuesta de plan terapéutico. Proponemos, a través de un caso práctico, una adaptación del Modelo de Prescripción Centrado en la Persona como estrategia para mejorar la adherencia terapéutica. Para ello, en la primera etapa del modelo hemos incorporado una herramienta para la valoración multidimensional de la adherencia adaptada traducida al español. Posteriormente, proponemos un conjunto de intervenciones a aplicar en las tres etapas restantes del modelo. Dichas intervenciones han sido identificadas en un resumen de revisiones sistemáticas y posteriormente seleccionadas mediante la metodología Delphi. Todos estos elementos han sido considerados adecuados en pacientes con multimorbilidad por la solidez de su evidencia, su utilidad potencial en la población diana y la factibilidad de su aplicación en la práctica clínica. La aproximación propuesta pretende sentar las bases de un modelo de cambio respecto al abordaje de la adherencia en el paciente con multimorbilidad.
Adherence in patients with multimorbidity. Where do we come from and where should we go to?

Manuela represents the typical profile of patient with multimorbidity, frequently seen in our daily clinical practice. Managing her highly complex drug therapy represents a challenge not only for healthcare professionals, but also for the patient, due to its potential to lead to non-adherence situations.

Approximately 50% of chronic patients present lack of adherence to prescribed treatments. This figure was originally described by Sackett et al.2 almost four decades ago, and has remained the same until now.3 This fact reflects the difficulty faced by health systems, professionals, and patients to find an approach that will address the adherence problem effectively. Lack of adherence has been associated with a worse disease control, a reduction in life quality and survival, as well as with an increase in healthcare expense4. Therefore, it seems reasonable to classify lack of adherence as a real health problem. Its approach must be a priority for all agents involved.

Given the limited efficacy of efforts conducted so far in order to improve medication adherence in chronic patients, it is necessary to adopt a new approach. Its implementation should be prioritized to patients with multimorbidity, which combines previous interventions with an interdisciplinary approach and supported by a solid theoretical framework which considers the personalization of the care plan to the characteristics, values and preferences of each patient.

To select the best interventions to improve adherence in older individuals, Marengoni et al.11,12 led a panel of experts through modified RAND appropriateness methodology. Seven key interventions were identified: i) Comprehensive Geriatric Assessment (in combination with tools specifically designed to measure medication adherence), with the aim to assess the iatrogenic risk of the patient and reach an effective prescribing; ii) education of the patient (and caregiver) to improve patient empowerment; iii) optimization of treatment (reducing inappropriate prescribing and, when achievable, reducing polypharmacy); iv) use of adherence aids; v) physician and other healthcare professionals’ education on drug therapy and communication skills; vi) comprehensive adherence assessment, and vii) facilitating access to medicine by better integration of healthcare services, including community pharmacists and primary care physicians.

At the same time, the objective of the EdeMAPP Project (Strategy for Improvement of Medication Adherence in Patients with Multimorbidity) was also to select appropriate interventions aimed at improving adherence in this population13-15. Based on an overview of systematic reviews and a modified Delphi methodology, it was identified the need to integrate within one single model of intervention, and according to the characteristics of each patient, the following actions: i) strategies to reduce medication regimen complexity through a simplify dosing schedule and/or desprescribing; ii) delivery personalized dosage systems; iii) strategies to promote communication between the healthcare professional and the patient; and iv) educational interventions for patients and/or primary caregivers regarding their primary condition, relevance of treatment, and medication adherence.

At this point, it is necessary to have a model for addressing patients with multimorbidity, which combines previous interventions with an interdisciplinary and patient-centered approach, therefore sensitive to patient preferences and needs. In this sense, the Patient-centered Prescription (PCP) Model could be an ideal setting. It is characterized by a medication review that allows to adapt the drug therapy of patients with clinical complexity along three consecutive stages (patient-centered, diagnosis-centered, and drug-centered assessment) which lead to a final stage consisting in the proposal of a comprehensive treatment plan, previously agreed upon by consensus.
with the patient and/or caregiver (figure 1). This approach would be consistent with the theory by McMullen et al., which indicates effective prescribing must be one of the cornerstones of any intervention for adherence improvement. At the same time, this claim becomes particularly important in patients with multimorbidity, given the well-known relationship between comorbidity, polypharmacy and medication inappropriateness.

The interdisciplinary approach of the PCP Model, as a result of the collaboration of hospital pharmacists and geriatricians, among other healthcare professionals, has demonstrated a high performance in the improvement of medication appropriateness in frailty patients, both those admitted in an acute geriatric unit or in a residential and intermediate care center. Therefore, it is a model feasible to apply and sufficiently versatile to be targeted as a multidimensional strategy for improving medication adherence in patients with multimorbidity.

Figure 2 outlines the approach proposed to enhance medication adherence according to the PCP Model. This approach integrates within the four PCP Model stages those interventions that have been previously identified as adequate to improve medication adherence in patients with multimorbidity. Based on a multidimensional evaluation of medication adherence oriented to patient-centered assessment, it intends to improve patient adherence through an adaptation of drug therapy to their preferences and life expectancy. At the same time, during the educational and motivational interview, this approach attaches importance to the shared decision-process between patients, caregivers (if any) and healthcare professionals.

Application of the PCP Model to enhance medication adherence: a case report

Figure 3 describes the application of the PCP Model to improve the medication adherence of our patient Manuela, which is explained as follows.

According to the proposed strategy, the first stage in the application of the PCP Model is an initial evaluation of the medication adherence (figure 4). In said interview, Manuela described occasional forgetfulness associated with medication refilling and administration. In the latter case, problems were mainly related with medication regimen complexity. Likewise, the patient confirms the non implementation and discontinuation of some of her drugs due to lack of tolerance. She also reveals an irregular administration of the drugs. In the specific case of Manuela, her MRCI value would be >33 after hospital discharge. This circumstance, associated with forgetfulness when taking her medication, requires an approach to drug therapy appropriateness emphasizing strategies for reducing medication regimen complexity.

The application of the PCP Model in our patient would entail a significant reduction in medication complexity, mainly due to deprescribing strategies (diagnosis-centered assessment), and to a lower extent to dosing regimen simplification (drug-centered assessment). In this way, a reduction >10 points according to the MRCI would be achieved. This reduction is clinically relevant according to the study by Wimmer et al., where 10-unit increases in medication regimen complexity were associated with higher mortality [HR 1.12 (CI 95% 1.01 to 1.25)].

On the other hand, the experience of drug-related adverse effects shown in the multidimensional assessment of medication adherence is clearly a factor determining inadequate medication persistence. The application of the PCP Model through drug-centered assessment allows the identification and switching of high-risk medication for patients with multimorbidity. In this sense, it is very helpful to have different tools based on explicit criteria for the identification of inappropriate prescribing.

In the specific case of Manuela, her MRCI value would be >50, and the risk of polypharmacy is higher. Therefore, the application of the PCP Model through drug-centered assessment allows the identification and switching of high-risk medication for patients with multimorbidity. In this sense, it is very helpful to have different tools based on explicit criteria for the identification of inappropriate prescribing. Likewise, we highlight the potential usefulness of a trigger tool to identify adverse drug events in elderly patients with multimorbidity. Among their strengths, we highlight its applicability in our setting, as well as its design through modified Delphi methodology. At the same time, it is important to assess, and if needed, to reduce the anticholinergic burden of pharmacotherapy. Although no clear relationship has been established to date between high anticholinergic burden and lack of medication adherence, its association with functional and cognitive decline would justify the reduction of the anticholinergic burden of pharmacotherapy.
of anticholinergic burden as an intervention to improve both appropriate prescribing and medication adherence.

Finally, a third barrier for inappropriate adherence that can be identified in our patient through the use of the ARMS-e scale is an inadequacy of knowledge and/or patient beliefs about their pharmacotherapy. The application of the PCP Model includes in its last stage (treatment plan) a motivational interviewing and counselling with the patient and/or main caregiver/s, if any. Said meeting must have a triple objective: i) motivational, reinforcing the importance of medication adherence in order to achieve the desired therapeutic objective; ii) counselling, informing the patient about those aspects necessary for an adequate use of pharmacotherapy, and iii) based on shared decision making, taking into account patient and caregivers preferences.

This final stage of the PCP Model provides the opportunity to continue tailoring the intervention to the patient, through prescribing appropriate tools to help managing pharmacotherapy, based on their clinical and social context. The fact that our patient presents moderate level of disability and high regimen complexity requires considering different interventions including personalized dosage systems (PDS).

A strategic alliance between hospital and community pharmacies has become an increasingly relevant aspect in this last stage of the PCP Model. Going deeper into the importance of the later agent as a health service provider, we must define referral circuits from the hospital setting for those patients that could benefit from medication refilling through PDS and/or motivational interviewing and counselling. These interventions would be delivered according to the medication adherence assessment performed on the first stage of the PCP Model.

Likewise, the use of certain information and communication technologies (ICTs) could be useful to us, with a double objective: i) medication reminder; and ii) promoting communication between the healthcare professional and the patient. However, there is no clear consensus about the feasibility of their use in patients with multimorbidity. Nevertheless, we must not rule out targeting ICTs to patient caregivers, given their frequent prominence in drug therapy management of frailty patients.

In any case, it is important to highlight that after a multidimensional assessment of adherence, the interventions to be conducted must not only target those problems identified (reactive interventions), but it is also necessary to prevent potential medication adherence problems, through the implementation of preventive interventions addressing modifiable barriers to adherence.

Looking into the future: From theory to practice

Interventions to improve medication adherence in patients with multimorbidity have shown limited and inconsistent efficacy among those studies available. Therefore, we should define new intervention models with patient-centered care, interdisciplinary approach and effective prescribing as key elements.

The previously described case represents a theoretical approach for a complex reality that shown every day in our clinical activity. When faced with these situations, we will usually act in an intuitive way. However, in order to optimize our interventions, we must apply action patterns foreseeable to be effective and efficient. In this sense, the PCP Model represents an innovative strategy, conceptually accurate and, most of all, with a feasible application. In any case, the proposed PCP Model must be adequately validated as a tool for improving medication adherence in patients with multimorbidity. While we have this information, its presentation through a case report allows us to assess its applicability. Regarding its necessary validation, some questions arise, such as the adequate method to monitor change patterns in medication adherence or if, on the contrary, we should leave behind the measurement of a surrogate variable for the benefit of a patient reported outcome.

Likewise, patients with multimorbidity are characterized by a dynamic and variable evolution, requiring continuous monitoring. Therefore, an approach based on specific interventions won’t be enough, and it will be required integrating and establishing alliances with other healthcare agents in every territory. In this context, the involvement of the community pharmacy as a provider of health services will be required; offering personalized dosage systems and follow-up and monitoring of medication adherence. On the other hand, we must not forget the increasing demand of health services at different levels of care of patients with multimorbidity. All this justifies driving the PCP Model through regional health system strategies, where different healthcare providers and agents will act in a coordinate and consistent manner in terms of addressing medication adherence.

For decision making process, the PCP Model attach particular importance to patient and caregiver (if any) counselling, motivation and involvement. It also considers that appropriate prescribing is an essential intervention for me-
dication adherence improvement. For this reason, it is necessary to ensure that those healthcare professionals involved will have adequate knowledge and skills regarding motivational interviewing and counselling, as well as sufficient ability in the setting of patient-centered prescribing.

The heterogeneity of healthcare teams and structures in different territories must not be a barrier for escalating the PCP Model to different settings, as long as the key elements of the model are incorporated. We consider that these elements are: the multidimensional assessment of medication adherence, its interdisciplinary approach, effective prescribing and, finally, a patient-centered care, therefore sensitive to patient preferences. On the other hand, and in order to ensure the sustainability of the PCP Model, it is necessary to introduce patient prioritization criteria; the use of new technologies could be valuable to this aim.

It is time, therefore, to innovate and take one step forward regarding medication adherence improvement in frailty patients, such as patients with multimorbidity. We are based on uncertain evidence, but we have a wide range of reasonable guidelines that must be useful as orientation at the time of reaching our objective successfully. This study intends to become the basis for a model of change for addressing medication adherence in patients with multimorbidity.

Funding

No funding.

Acknowledgements

Conflict of interests

No conflict of interest.

Figure 3. Patient-centered Prescription Model for enhancing medication adherence: a case report.

<table>
<thead>
<tr>
<th>Conditions at baseline</th>
<th>Drug therapy at baseline</th>
<th>PATIENT-centered Assessment</th>
<th>DIAGNOSIS & DRUG-centered Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>Amlodipine 5mg/12 hs. Doxazosin 4mg/12 hs Hydrochlorothiazide 25mg/24hs.</td>
<td>Treatment objective: Maintaining functionality</td>
<td>a. Deprescribing strategies b. Switching of high-risk medications c. Dosing simplification</td>
</tr>
<tr>
<td></td>
<td>Lower limb edema: HTN 130/80 mmHg Manidipine 10mg/24 hs. Doxazosin 8mg/24 hs. GFR 22ml/min: Urate 8.0 mg/dl Discontinue Hydrochlorothiazide 25mg/24hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary Heart Disease</td>
<td>ASA 100mg/24hs. Bisoprolol 5mg/24 hs. Isosorbide mononitrate 50mg/12 hs. Ranolazine 375mg/12 hs. Atorvastatin 40mg/24 hs.</td>
<td></td>
<td>Controversial efficacy: Barthel 55/100 Discontinue Ranolazine 375mg/12 hs. CL 138 mg/dl; HDL 40mg/dl; LDL 50mg/dl Simvastatin 40mg/24hs.</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>Atenolol 50mg/12 hs. Furosemide 40mg/8 hs.</td>
<td>Non-adherence barriers identified through the ARMS questionnaire (see details in Figure 4): High medication regimen complexity. Medication-related adverse events. Inadequate knowledge and/or beliefs about drug therapy.</td>
<td></td>
</tr>
<tr>
<td>Diabetes Mellitus II</td>
<td>Repaglinide 0.5mg/12 hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperuricemia (asymptomatic)</td>
<td>Allopurinol 100mg/24 hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic Renal Impairment</td>
<td>No specific treatment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptic Ulcer</td>
<td>Omeprazole 20mg/24 hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>Ipratropium 40mcg/8 hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonarthrosis</td>
<td>Paracetamol 1g/8 hs. Calcium / Vitamin D 600mg/400IU/24 hs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>Lorazepam 1mg/24 hs. + 1 mg/prn.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Patient-centered Prescription Model for enhancing medication adherence: a case report.
Adherence to Refills and Medications Scale (ARMS). Case Report.
Answer the following questions with: none, some, most, all.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Manuela’s answers</th>
<th>High medication regimen complexity</th>
<th>Medication-related adverse events</th>
<th>Inadequate knowledge and/or beliefs about drug therapy</th>
<th>Socioeconomic aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How often do you forget to take your medicine?</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. How often do you decide not to take your medicine?</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. How often do you forget to get prescriptions filled?</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. How often do you run out of medicine?</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. How often do you skip a dose of your medicine before you go to the doctor?</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. How often do you miss taking your medicine when you feel better?</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. How often do you miss taking your medicine when you feel sick?</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. How often do you miss taking your medicine when you are careless?</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. How often do you change the dose of your medicines to suit your needs (like when you take more or less pills than you are supposed to)?</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. How often do you forget to take your medicine when you are supposed to take it more than once a day?</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. How often do you put off refilling your medicines because they cost too much money?</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. How often do you plan ahead and refill your medicines before they run out?</td>
<td>Most</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Items associated with medication administration; b. Items associated with medication refill.

Figure 4. ARMS scale and drivers for non-adherence: a case report.

Bibliography

