Cytotoxicity of *Agaricus sylvaticus* in non-tumor cells (NTH/3T3) and tumor (OSCC-3) using tetrazolium (MTT) assay

Joice Vinhal Costa Orsine¹, Luíssa Marques Brito², Renata Carvalho Silva¹, Maria de Fátima Menezes Santos Almeida³ and Maria Rita Carvalho Garbi Novaes⁵

Abstract

The purpose of this study was to assess the cytotoxic effect of the non-fractionated aqueous extract of *A. sylvaticus* mushroom in cultures of non-tumor cells (NIH3T3) and tumor cells (OSCC-3). The cells were maintained in DMEN cell culture medium added of 10% of fetal bovine serum and 1% antibiotic. For the cytotoxicity test we prepared the aqueous mushroom extract at concentrations of 0.01 mg.ml⁻¹, 0.02 mg.ml⁻¹, 0.04 mg.ml⁻¹, 0.08 mg.ml⁻¹, 0.16 mg.ml⁻¹, and 0.32 mg.ml⁻¹. For the culture, 2 x 10⁵ cells/ml was deposited in 96-well microplates during 24 hour incubation with subsequent exchange of medium by another containing the mushroom concentrations. After 24 hour incubation the medium was discarded and 100 ml of tetrazolium blue (MTT) was added at a concentration of 5 mg.ml⁻¹. The microplates were incubated for 2 h at 37° C. Spectrophotometric analysis was performed using 570 nm wavelength. From the values of the optical densities we determined the drug concentration capable of reducing cell viability by 50%. Therefore, the mushroom *A. sylvaticus*, at all concentrations tested, did not show cytotoxic effects, once the inhibitory concentration (IC₅₀) obtained for tumor cells OSCC-3 was 0.06194 mg.ml⁻¹ and the IC₅₀ checked for non-tumor cells NIH3T3 was 0.06468 mg.ml⁻¹. This test made it possible to determine that *A. sylvaticus* mushroom has no cytotoxic effects, suggesting its use safe for human consumption.

DOI:10.3305/nh.2013.28.4.6461

Key words: Toxicity. Food safety. *Agaricus sylvaticus.*

Correspondence: Joice Vinhal Costa Orsine. Professor. Instituto Federal Goiano-Campus Urutaí. Rodovia Geraldo Silva Nascimento, km 2.5. CEP 75790-000 Urutaí - Goiás - Brazil. E-mail: joicevinhal@gmail.com

Resumen

El objetivo de este estudio fue evaluar el efecto citotóxico de un extracto acuoso no fraccionado de la seta *A. sylvaticus* en cultivos de células no tumorales (NIH3T3) y tumorales (OSCC-3). Se mantuvo a las células en un medio de cultivo celular DMEN al que se añadió suero de ternera fetal al 10% y antibiótico al 1%. Para la prueba de toxicidad, se preparó el extracto acuoso del hongo a concentraciones 0,01 mg.ml⁻¹, 0,02 mg.ml⁻¹, 0,04 mg.ml⁻¹, 0,08 mg.ml⁻¹, 0,16 mg.ml⁻¹ y 0,32 mg.ml⁻¹. Para el cultivo, 2 x 10⁵ células/ml se depositaron en microplacas de 96 poci-lllos durante 24 horas de incubación con el subsiguiente recambio del medio por otro que contenía las concentra-ciones del hongo. Tras 24 horas de incubación, se desechó el medio y se añadieron 100 ml de azul de tetrazolio (MTT) a una concentración de 5 mg.ml⁻¹. La microplacas fueron incubadas durante 2 h a 37° C. Se realizó un análisis espectrofotométrico con una longitud de onda de 570 nm. A partir de los valores de las densidades ópticas, se deter-minó la concentración de la droga capaz de reducir la via-bilidad celular en un 50%. La seta *A. sylvaticus*, a todas las concentraciones probadas, no mostró efectos citotóxi-cos una vez que la concentración inhibitoria (IC₅₀) obtenida para las células tumorales OSCC-3 fue de 0,06194 mg.ml⁻¹ y la IC₅₀ comprobada para las células no tumorales NIH3T3 fue de 0,06468 mg.ml⁻¹. Esta prueba consiguió determinar que la seta *A. sylvaticus* no posee efectos cito-tóxicos lo que sugiere un uso seguro para el consumo humano.

DOI:10.3305/nh.2013.28.4.6461

Palabras clave: Toxicidad. Seguridad alimentaria. *Agaricus sylvaticus.*
Introduction

The mushrooms of the genus Agaricus have long been considered functional foods for their rich chemical composition and high amount of bioactive compounds, bringing many benefits to the health of those who consume it, besides the absence of toxicity (Orsine et al., 2012a).

Studies have been conducted in an effort to utilize mushrooms of the genus Agaricus in the treatment of various ailments. The Agaricus blazei Murill mushroom showed antinociceptive and anti-inflammatory effects in Wistar rats (Carvalho et al., 2011); protective effect against lethal infection with Streptococcus pneumoniae in mice (Bernadshaw et al., 2005); reducing effect on the degree of edema and hemorrhagic halo in bothropic poisoning in experimental rabbits (Ferreira et al., 2003) further to high potential use in the treatment of leishmaniasis (Valadares et al., 2012). A dietary supplementation with A. sylvaticus was able to improve gastrointestinal disorders in post-surgery patients with colorectal cancer as well as the quality of life of these patients (Fortes et al., 2010). The Agaricus bisporus mushroom stimulated the production of immunoglobulin A in saliva samples of healthy volunteers, suggesting that its use was responsible for developing immunity (Jeong et al. 2012).

However, there are few toxicological studies on edible mushrooms and food safety tests. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test has often been used to investigate cytotoxicity caused by medicinal plants (Shoeb et al. Jan 2012; Talib and Mahasneh, 2010) and fungi with antimicrobial activity (Joel and Bhimba, 2012).

The principle of the MTT technique consists in the absorption of yellow tetrazolium salts by mitochondrial reductases of metabolically active cells, resulting in a product called formazan. This product accumulated intracellularly, is extracted by adding an appropriate solvent. This is a low-cost method, yielding fast results in 48 hours (Mosmann, 1983).

The purpose of this study was to perform cytotoxicity screening of the aqueous extract of A. sylvaticus mushroom in non-tumoral fibroblasts cell line (NIH/3T3) and oral squamous cell carcinoma (OSCC-3), using the MTT reduction test.

Materials and methods

Obtaining the sample

The A. sylvaticus mushroom was obtained from a producer in Minas Gerais, Brazil, in 2010. The sample was dried and milled.

Preparation of extract

We weighed 10 g of dehydrated minced mushroom, and diluted it in 100 ml of distilled water. The solution was stirred in a mechanical shaker for 30 minutes and was then filtered through filter paper.

The filtered solution was then distributed into eppendorfs 1mL previously weighed and identified, frozen, and subsequently taken to a lyophilization chamber. After complete sublimation of water, we weighed again the eppendorfs containing the soluble solids in mushroom A. sylvaticus water.

We prepared the non-fractionated aqueous extract of the mushroom A. sylvaticus at concentrations: 0.33 mg.ml^-1, 0.16 mg.ml^-1, 0.08 mg.ml^-1, 0.04 mg.ml^-1, 0.02 mg.ml^-1, and 0.01 mg.ml^-1.

In vitro study

In vitro studies were carried out following the methodology proposed by Saldanha (2007), from the MTT assay.

Culture and proliferation of non-tumor fibroblast cell line (NIH/3T3) and oral squamous cell carcinoma (OSCC-3)

Cell lines NIH/3T3 (non-tumor fibroblasts) and OSCC-3 (immortalized cells in culture from a human oral squamous cell carcinoma) were maintained separately in culture medium DMEM (Dulbecco’s Modified Eagle Medium), GIBCO-BRL, supplemented with 10% fetal bovine serum (GIBCO-BRL) and 1% of antibiotics (penicillin-streptomycin).

The cultures were set up from an initial passage of 2 x 10^6 cells in 75 cm² culture flasks, maintained in an incubator at 37 °C with saturated humidity of 5 % CO₂ atmosphere. Upon reaching 80-90% confluence, cells were released from the bottom of the flask by treatment with 0.125% trypsin solution/0.02% EDTA (ethylenediamine-tetraacetic acid) for two minutes, centrifuged at 1,000 rpm for three minutes, using Neubauer counting chamber and transferred to a new culture flask.
Treatment of NIH/3T3 cells and OSCC-3 with non-fractioned aqueous extract of mushroom A. sylvaticus

After 24 hours of cultivation in the presence of non-fractioned aqueous extract of mushroom A. sylvaticus sample, cells were subjected to MTT test to determine viability of the isolated cells. Concentrations of the non-fractioned aqueous extract were added to the cultures, which were maintained for 24 hours under the conditions described in section 2.3.1. We used solution DMEM only as negative control. The NIH/3T3 cells and OSCC-3 were maintained at the Nanobiotechnology laboratory, Genetics and Morphology Department, Brasilia University.

Analysis of cell viability

Cell viability was assessed after two hours contact of NIH/3T3 cells and OSCC-3 with MTT in spectrophotometer. For the reading we used wavelength of 570 nm. The result obtained indicates the optical density, since the darker the color obtained, the greater the MTT metabolism of the cells under study. Consequently, a higher optical density results in less toxicity of the extract tested. We used the Prism Graph Software to analyze the results.

The cytotoxicity of each concentration of the non-fractionated aqueous extract of the mushroom A. sylvaticus was expressed by cell death, calculated in relation to negative control, according to the methodology proposed by Zhang et al. (2004).

\[
\text{Dead cells (\%)} = \frac{\text{Absorbance of negative control} - \text{Absorbance of test} \times 100}{\text{Absorbance of negative control}}
\]

The data generated were used to plot a dose-response curve which determines the extract concentration capable of killing 50% of the cell population tested, indicating IC_{50} (inhibitory concentration).

Statistical analysis

Data were expressed as the mean percentage of toxicity. Significance levels among concentrations of non-fractionated aqueous extract of A. sylvaticus mushroom tested were analyzed using analysis of variance (ANOVA), with Software Graphpad PRISM® 4.0. For multiple comparisons among groups, control group and intra-group, we used the Newman-Keuls test, with significance set at \(p < 0.05 \).

Results

Agaricus sylvaticus mushroom have a rich chemical composition, highlighting the variety and quantity of minerals as well as its high protein content (Orsine et al., 2012b). But, to be approved in the in vitro cytotoxicity assays, the sample to be tested must not cause cell death nor affect its cellular functions. Therefore, tests using cell culture can detect cell lysis, growth inhibition and other effects that can be triggered onto these cells (Daguano et al., 2007).

In figure 1 we presented the results for the OSCC-3 cells treated with different concentrations of mush-

![Graph showing cell viability against log concentration](image-url)
room *A. sylvaticus*. The IC$_{50}$ determined was of 0.06194 mg.ml$^{-1}$, that is, the *A. sylvaticus* non-fractionated water extract does not show toxicity in tumor cells used in this study.

In figure 2 the results were expressed regarding NIH3T3 cell culture treated with different concentrations of mushroom *A. sylvaticus*. The IC$_{50}$ found was 0.06468 mg.ml$^{-1}$, that is, the *A. sylvaticus* non-fractionated water extract showed no toxicity in non-tumor cells analyzed.

Discussion

This study investigated the mushroom *A. sylvaticus* and its safe use in food. These results may contribute towards research done with *A. sylvaticus*, toxicity testing and food safety, supplement, or as an adjunct in cancer treatment, since very low toxicity of the extract was observed in two types of cells tested.

Mushrooms of the genus Agaricus have been widely studied by several authors, in search of answers to their toxicity (Chang et al., 2012; Orsine et al., 2012c; Bellini et al., 2008; Novaes et al., 2007; Singi et al. 2006; Sugui et al. 2006; Kuroiwa et al. 2005; Costa et al. 2003).

Table I presents studies on the toxicity of edible mushrooms of different genres, performed worldwide in the period from 2003 to 2012 in order to support the discussion of this work.

Plants used in folk medicine in Jordan were tested for cytotoxic effects using the MTT assay on Vero cell line. The *Rosa damascena* plant showed IC$_{50}$ value of 454.11 mg.ml$^{-1}$, whereas the *Ononis hirta* plant showed IC$_{50}$ of 72.50 mg.ml$^{-1}$ (Talib and Mahasneh, 2010).

The cytotoxicity of five strains of fungus *Penicillium thomii* (named as IR-1, IR-2, IR-4, IR-6 and IR-7) isolated from the medicinal plant *Terminalia chebula* Retz, in Bangladesh, was evaluated by the MTT assay. The ethyl acetate extract of the fungus strains inhibited the growth of colon cancer cells CaCo-2. Values were obtained for the IC$_{50}$ ranging from 44 to 67 mg.ml$^{-1}$ (Shoeb et al. 2012).

The cytotoxicity caused by the extract of fungi *Pestalotiopsis Microspora* VB5 was screened using the MTT test. As a result, the authors observed that the concentration of the extract tested was inversely proportional to Hep-2 cell line (human epithelial cells derived from a larynx carcinoma) growth (Joel and Bhimba, 2012).

Conclusion

The non-fractionated aqueous extract of the mushroom *A. sylvaticus* showed no cytotoxic effect on tumor cells OSCC-3 and non-tumor cells NIH/3T3, showing to be safe for use in food and/or dietary supplementation.

Acknowledgements

We thank ESCS to support this work.

References

<table>
<thead>
<tr>
<th>References</th>
<th>Type of study</th>
<th>Mushroom</th>
<th>Type of toxicity</th>
<th>Objectives</th>
<th>Methods and materials</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al. (2012)</td>
<td>Experimental</td>
<td>Agaricus blazei Murrill</td>
<td>Genotoxicity</td>
<td>To evaluate the safety and tolerance of</td>
<td>Doses of 0.1 and 10.5mg/ml of A. blazei Murrill daily were administered to 10 mice by gavage for 28 days.</td>
<td>There was no significant change in brain, heart, kidneys, liver, spleen, adrenal glands, ovaries or testicles histologically or macroscopically. With increasing doses, male and female rats did not show a gradual rise in serum concentration in any of the items examined, with the exception of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in females, which were significantly abnormal in comparison with the control group. The Ames test, pathology determinations, biochemical analysis and routine blood parameters were normal, except for AST and ALT in females. The results showed that statistical differences observed in one sex was not observed in the others and were not dose dependent.</td>
</tr>
<tr>
<td>Motoi and Ohno (2012)</td>
<td>Experimental</td>
<td>Agaricus brasiliensis S. Wasser</td>
<td>Genotoxicity</td>
<td>Assess the genotoxicity of A. brasiliensis through bacterial reverse mutation tests, micronucleus and mouse lymphoma.</td>
<td>The reverse mutation test used five bacterial strains including Salmonella typhimurium and Escherichia coli. For the rat micronucleus test, we used the ratio of polychromat/ic erythrocyte and normochromat/ic erythrocyte as indicators of bone marrow cell growth inhibition. For the mutagenicity test we used L5178Y/TK+/-. In mouse lymphoma assay, the frequency of mutation was similar both in the presence and absence of A. brasiliensis. Supporting the long history of human consumption of A. brasiliensis, the data derived from this study strongly indicate the safety of this mushroom.</td>
<td>In the bacterial reverse mutation test, no toxicity was observed up to a dose of 5000 µg / plate. In the mouse micronucleus assay, no toxicity was observed up to a dose of 1 g/kg body weight. In mouse lymphoma assay, the frequency of mutations was similar both in the presence and absence of A. brasiliensis.</td>
</tr>
</tbody>
</table>
Cytotoxicity of *Agaricus sylvaticus* using tetrazolium (MTT) assay

<table>
<thead>
<tr>
<th>Table I (cont.)</th>
<th>Studies on the toxicity of edible mushrooms and/or medicinal. Period 2003-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>Type of study</td>
</tr>
<tr>
<td>Savi et al. (2011)</td>
<td>Experimental</td>
</tr>
<tr>
<td>Kim et al. (2011)</td>
<td>Experimental</td>
</tr>
<tr>
<td>Postemsky et al. (2011)</td>
<td>Experimental</td>
</tr>
<tr>
<td>References</td>
<td>Type of study</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Yoshkoda (2010)27</td>
<td>Experimental</td>
</tr>
<tr>
<td>Gill (2008)28</td>
<td>Experimental</td>
</tr>
</tbody>
</table>
Table I (cont.)
Studies on the toxicity of edible mushrooms and/or medicinal. Period 2003-2012

<table>
<thead>
<tr>
<th>References</th>
<th>Type of study</th>
<th>Mushroom</th>
<th>Type of toxicity</th>
<th>Objectives</th>
<th>Methods and materials</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellini et al. (2008)</td>
<td>Experimental</td>
<td>Agaricus blazei</td>
<td>Toxicity ovary cell clone of Chinese hamster (CHO-K1)</td>
<td>Review the mutagenic and protective capacity of mushroom A. blazei</td>
<td>Different fractions of the methanol extract of the mushroom A. blazei were tested with clastogenicity cytokinesis-blocking micronucleus (CBMN) and the test hypoxanthine guanine phosphoribosyl transferase locus (HGPRT) gene mutation in both cell clone using Chinese hamster ovary K1 (CHO-K1).</td>
<td>The methanolic fractions of A. blazei mushroom tested did not provide chemical protection and all fractions showed to be potentially mutagenic in hgpR test. It was evident that more tests are needed to investigate the biological effects of methanolic and aqueous extracts of A. blazei, and other interactions with the metabolism of the cells before recommending its widespread use by the population, which is already happening in many countries. These findings indicate that the methanolic extracts of the fungus should not be used on account of its genotoxicity and that one should be careful in the use of A. blazei by the population before the biochemical characterization of this fungus is complete.</td>
</tr>
<tr>
<td>Nieto (2008)</td>
<td>Experimental</td>
<td>Pleurotus ostreatus and Pleurotus pulmonarius</td>
<td>Toxicity to Artemia salina</td>
<td>Provide information on the toxicity of three basidiomycetes fungi of the Order Agaricales.</td>
<td>Solutions were obtained with seven different concentrations of mushrooms P. ostreatus and P. pulmonarius. Eggs of Artemia salina (Arthropoda, Crustacea, Anostraca) were placed in one liter of culture medium, nauplii hatched. 5 ml of each solution were added to tens nauplii. After 24 hours of exposure, the dead nauplii were counted in each test tube. Five replicates were performed by dilution.</td>
<td>For both Pleurotus species tested, no concentration of 50% mortality reached the nauplii. In the case of P. pulmonarius, concentrations below 1.000 mg/ml did not affect 25% of the population, while for P. ostreatus was achieved by 4.5%. The results suggested that the biologically active metabolites added to extracts P. and P. ostreatus, P. pulmonarius have low toxicity, rendering them safer for use as nutraceuticals.</td>
</tr>
<tr>
<td>Novaes et al. (2007)</td>
<td>Laboratory, double-blind trial</td>
<td>Agaricus sylvaticus</td>
<td>Toxicity clinical, biochemical and histopathological.</td>
<td>To evaluate the effects of acute toxicity of A. sylvaticus (AAS) by clinical, biochemical and histopathological findings in healthy mice.</td>
<td>Aqueous extract was obtained by infusion. The animals were led by gavage (esophageal) 1.5 g/kg over 24 hours. The biochemical sample was collected 15 days after administration in cardiac puncture. The histopathological study was conducted in the lungs, intestines, kidneys, stomach and liver.</td>
<td>Signs of apathy and respiratory changes occurred more often in groups of male and female animals treated with AAS. Dosages of biochemistry elements showed no differences statistically significant. There were no cellular morphological changes. Changes found were correlated with later studies with presence of phenol in the mushroom, a substance that acts on the central nervous system, initially causing stimulation followed by depression. Administration of A. sylvaticus at doses greater than those used in human therapeutic protocols, showed very low toxicity.</td>
</tr>
</tbody>
</table>
Table I (cont.)

<table>
<thead>
<tr>
<th>References</th>
<th>Type of study</th>
<th>Mushroom</th>
<th>Type of toxicity</th>
<th>Objectives</th>
<th>Methods and materials</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luo (2007)*</td>
<td>Experimental</td>
<td>Coprinus comatus</td>
<td>Toxicity in nematodes</td>
<td>Obtain evidence of nematicidal activity of C. comatus mushrooms.</td>
<td>We performed a bioassay of exposure of nematodes Panagrellus redivivus to the mushroom with the regeneration plates of mushrooms, with organic solvent extracted from prickly balls, with purified and crushed from prickly balls. The extract was subjected to thin layer chromatography (TLC) in silica gel to extract the toxin. We conducted a spectrum analysis and nematicidal assay of compounds.</td>
<td>73.7% and 98.3% of the nematodes were immobilized by strain Coprinus C-LHA-7 and 84.3% by strain C-1. The results showed that the extracts of Coprinus comatus with nematicidal activity of nematodes were immobilized by strain C-LHA-7 after 15 and 30 min. 78% and 93.8% of strain LHA-7 was immobilized by the prickly balls after 5 and 10 min. The results of tests with prickly balls extracts were similar to that of efficiency immobilization produced by normal balls. However, some of the extracts obtained showed any obvious effect on the nematodes tested. Compounds 1 and 2, determined by a spectrophotometer, were the most nematicotoxic of the seven extracts with 90% lethal dose (LD90) values of 200 g/mL against both M. incognita and P. redivivus. The other compounds isolated from C. comatus also showed nematicidal activity, with higher doses (400 to 800 g/mL).</td>
</tr>
<tr>
<td>Singi et al. (2006)*</td>
<td>Experimental</td>
<td>Agaricus Blazei</td>
<td>The clinic</td>
<td>To evaluate the acute effect of intravenous injection of A. blazei Murrill on mean arterial pressure (MAP) and heart rate (HR) of anesthetized rats, creating the possibility of studying its chronic use.</td>
<td>Aqueous extract of the mushroom was prepared by drying, crushing and dissolving. We administered concentrations of 1.25 mg/kg, 2.50 mg/kg, and 5.00 mg/kg of aqueous extract volume of 0.2 ml in six rats. The aqueous solution of Agaricus Blazei Murrill caused a decrease in MAP at 15 s (p < 0.001) and 15, 30, 45, 60 and 120 s after application of the extracts. Previous studies have also found the explanation that high levels of potassium and calcium in A. blazei would cause hyperpolarization and relaxation of vascular smooth muscle leading to decreased blood pressure.</td>
<td>A concentration of 1.25 mg/kg caused no significant change in MAP or HR; the 2.50 mg/kg caused a decrease in MAP at 15 s (p < 0.001) and in HR at 30 s (p < 0.001) and the 5.00 mg/kg decreased the MAP at 15 s (p < 0.001) and HR at 15 and 30 s (p < 0.001). The aqueous extract of A. blazei reduced MAP in a concentration-dependent manner. The HR also suffered a decline, but not in concentration-dependent. Cardiomyocytes with other studies, the authors attributed the decrease in MAP to gamma-aminobutyric acid (GABA) found in A. blazei, which has direct action on blood vessels, by ganglionic blockade with consequent inhibition of the release of transmitters in the sympathetic nerve terminals, which would reduce the MAP. Previous studies have also found the explanation that high levels of potassium and calcium in A. blazei would cause hyperpolarization and relaxation of vascular smooth muscle leading to decreased blood pressure.</td>
</tr>
<tr>
<td>Sugui et al. (2006)*</td>
<td>Experimental</td>
<td>Agaricus brasiliensis</td>
<td>Genotoxicity</td>
<td>To evaluate the protective effect of an aqueous solution of A. brasiliensis (AB strain 99/28) in bone marrow, peripheral blood, bladder, colon and liver of Wistar rats.</td>
<td>Aqueous extract of the mushroom was prepared by drying, crushing and dissolving. We administered concentrations of 1.25 mg/kg, 2.50 mg/kg, and 5.00 mg/kg of aqueous extract volume of 0.2 ml in six rats. The aqueous extract of A. brasiliensis reduced MAP in a concentration-dependent manner. The HR also suffered a decline, but not in concentration-dependent. Cardiomyocytes with other studies, the authors attributed the decrease in MAP to gamma-aminobutyric acid (GABA) found in A. brasiliensis, which is direct action on blood vessels, by ganglionic blockade with consequent inhibition of the release of transmitters in the sympathetic nerve terminals, which would reduce the MAP. Previous studies have also found the explanation that high levels of potassium and calcium in A. brasiliensis would cause hyperpolarization and relaxation of vascular smooth muscle leading to decreased blood pressure.</td>
<td>The aqueous solution A. brasiliensis under the conditions tested showed no mutagenic, genotoxic or carcinogenic effects. However, an antimutagenic effect against the mutagenicity of ENU was observed in bone marrow cells and a significant reduction in the number of aberrant crypts per focus (4-6 crypts/focus) in DMH-induced colon of animals post-treated with aqueous solution of the mushroom. In this context, the results suggested that the aqueous solution of A. brasiliensis may have compounds that significantly reduce the frequency of micronucleated cells in the bone marrow of rats and that they may act at a later stage of the carcinogenesis process.</td>
</tr>
</tbody>
</table>
Table I (cont.)

<table>
<thead>
<tr>
<th>References</th>
<th>Type of study</th>
<th>Mushroom</th>
<th>Type of toxicity</th>
<th>Objectives</th>
<th>Methods and materials</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantovani et al. (2006)†</td>
<td>Experimental</td>
<td>Agaricus brasiliensis</td>
<td>Genotoxic and clastogenic.</td>
<td>To evaluate the genotoxic clastogenic effects and protective of aqueous extracts of A. brasiliensis prepared in different ways in cell culture of Chinese hamster ovary, CHO-k1.</td>
<td>Chinese hamster ovary cells were grown in culture medium F-12/DME supplemented with 10% fetal bovine serum. We tested two types of aqueous extracts of A. brasiliensis. The first concentration 10%, by dissolving 20 g of dried mushroom and ground into 200 mL of deionized water at room temperature (20°C), three concentrations: 0.2, 0.4 and 0.6% in culture. The second concentration was produced after extraction of organic compounds, prepared from the same mushroom dehydrated and crushed, dissolved in dimethyl sulfoxide (DMSO) at a ratio of 5 mg/mL, and the final concentration in culture of 100 mg/mL, used in the Chromosomal Aberration assay (CA-II). Comet assay was also performed (SCGE) associated with two DNA blocking repair, Ara-C and DeoT in the presence or absence of an alkylating agent.</td>
<td>As for the clastogenicity test, we verified that the concentrations 0.2 and 0.4% of the aqueous extracts of A. brasiliensis did not induce damage, unlike the highest concentration of 0.6%, which showed clastogenic activity. In genotoxicity treatments in SCGE, the concentration of 0.2% of the extract showed no genotoxic activity, unlike concentrations of 0.4 and 0.6%, which were effective in inducing DNA damage. The 0.4% concentration was found to be damage inducing by comet assay. The anticlastogenicity results indicated that in most treatments, the aqueous extract of A. brasiliensis showed no protective activity against DNA damage induced by Ara-C and Ara-Č + MMS. Through SCGE, A. brasiliensis in the three concentrations tested showed no antigenotoxic activity. The data suggest caution in the consumption and ingestion of A. brasiliensis by humans, especially at high concentrations, due to its genotoxic and clastogenic activity.</td>
<td></td>
</tr>
<tr>
<td>Kuroiwa et al. (2005)‡</td>
<td>Experimental</td>
<td>Agaricus blazei</td>
<td>Clinical, subchronic toxicity</td>
<td>To evaluate the possible protective effects of A. blazei against genotoxic action of urethane in somatic cells of Drosophila melanogaster.</td>
<td>We used 20 animals randomly distributed into five groups. The control group received the basal diet and the others fed the diet containing powdered aqueous extract of A. blazei Murrill at doses of 0.63, 1.25, 2.5 and 5% (maximum - according to preliminary studies of two weeks) for 90 days. We performed hematological tests, biochemical and histopathological tests.</td>
<td>There were no significant changes in the general appearance and no deaths occurred in neither groups. Although urea nitrogen levels were slightly higher in male of groups 2.5% and 5%, histopathological changes were not observed in the kidneys. The serum creatinine levels were very low, suggesting that the increase in urea nitrogen has little toxicological significance. However, there was no evidence of hepatic toxicity in serum assays, organ weights and histopathology. Extract A. blazei Murrill demonstrated little or no significant toxicity, even at 5% dietary supplementation. Thus, the mushroom extract up to 5% in diet (2,654 mg/kg body weight/day for male rats and 2,965 mg/kg body weight/day for females) does not cause noticeable adverse effects in F344 rats.</td>
<td></td>
</tr>
<tr>
<td>Costa et al. (2003)†</td>
<td>Experimental</td>
<td>Agaricus blazei</td>
<td>Genotoxicity</td>
<td>To evaluate the possible protective effects of A. blazei against genotoxic action of urethane in somatic cells of Drosophila melanogaster.</td>
<td>To evaluate the possible protective effects of A. blazei against genotoxic action of urethane in somatic cells of Drosophila melanogaster. We used larvae of 72 ± 4 h, resulting from crosses and high standard metabolic bioactivation.</td>
<td>No increase was statistically significant in the frequencies of mutant spots in larvae exposed to tea A. blazei. When the mushroom A. blazei was associated with urethane, we observed a statistically significant reduction in the frequency of mutant spots. The results suggest that A. blazei is not genotoxic and exerts a protective effect against genotoxic action of urethane.</td>
<td></td>
</tr>
</tbody>
</table>

