Undernutrition, serum vitamin B12, folic acid and depressive symptoms in older adults

Mafalda Brito Noronha¹, Nathalie Almeida Cunha¹, Daniela Agra Araújo¹, Sofia Flamínio Abrunhosa², Ada Nunes Rocha¹ and Teresa Freitas Amaral¹

¹Faculty of Nutrition and Food Science of Porto University, Rua Dr. Roberto Frias, 4200-465 Porto. ²Lar Mãe de Jesus, Travessa Padre Manuel Bernardes, 4465-684 Leça do Balio, Portugal.

Abstract

Background: the question on whether undernutrition remains linked to depressive symptoms, considering the effect of deficiencies of vitamin B12 and folate, is of practical relevance because they are potentially preventable and treatable. This study aims to evaluate whether undernutrition is linked to depressive symptoms, considering the effect of vitamin B12 and folate plasma levels.

Method: a cross-sectional study was conducted in a sample of 84 older adults living in care homes. Data about nutritional status using Mini-Nutritional Assessment, serum folic acid and Vitamin B12 levels, cognitive ability, functional dependency, symptoms and/or depressive behaviour was obtained. Depression symptoms were measured using the 20-item version of the Center for Epidemiologic Studies Depression scale.

Results: fifty three older adults were at depression risk (63.1%). Of those, 34% were at undernutrition risk. Although a high frequency of older adults with low plasma levels of vitamin B12 (42.9%) and lower levels of folic acid (5.9%) was found, no significant differences concerning the existence of depressive symptoms were found. In the multivariable analysis, an increase in depression risk was observed amongst participants nutritionally at risk OR = 3.47 (1.05-11.46), whereas having low levels of folic acid and Vitamins B12 were not associated with depression risk.

Conclusion: amongst undernourished older adults, an increase in risk of depression was observed independently of folic acid and vitamin B12 status. These results highlight the need to implement preventive strategies, particularly directed at older adults living in care home.

Key words: Undernutrition. Depression. Elderly. Folic acid. Vitamin B12.

DOI:10.3305/nh.2015.32.1.8880

Correspondence: Teresa F. Amaral.
Faculty of Nutrition and Food Science of Porto University.
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
E-mail: amaral.tf@gmail.com

Original/Valoración nutricional

DESNUTRICIÓN, VITAMINA B12 SÉRICA, ÁCIDO FÓLICO Y SÍNTOMAS DEPRESIVOS EN LOS ADULTOS MAYORES

Resumen

Antecedentes: la cuestión del posible vínculo entre la desnutrición y los síntomas depresivos, considerando el efecto de las deficiencias de vitamina B12 y de folato, es de importancia práctica porque estas son potencialmente prevenibles y tratables. Este estudio tiene como objetivo evaluar si la desnutrición está relacionada con los síntomas depresivos, teniendo en cuenta el efecto de los niveles plasmáticos de vitamina B12 y de folato.

Método: un estudio transversal se llevó a cabo en una muestra de 84 adultos mayores que viven en hogares de cuidado. Se obtuvieron datos sobre el estado nutricional utilizando Mini-Nutritional Assessment, los niveles séricos de ácido fólico y vitamina B12, la capacidad cognitiva, la dependencia funcional, y/o los síntomas de comportamiento depresivo. Los síntomas de depresión se midieron utilizando la versión de 20 ítems de la Escala de Depresión del Centro de Estudios Epidemiológicos.

Resultados: cincuenta y tres adultos mayores estaban en riesgo de depresión (63,1%). De ellos, el 34% estaban en riesgo de desnutrición. Aunque se encontró una alta frecuencia de adultos mayores con bajos niveles plasmáticos de vitamina B12 (42,9%) y niveles más bajos de ácido fólico (5,9%) fue encontrado, no se encontraron diferencias significativas en relación con la existencia de síntomas depresivos. En el análisis multivariable se observó un aumento en el riesgo de depresión entre los participantes con riesgo nutricional OR = 3,47 (1,05 a 11,46), mientras tener bajos niveles de ácido fólico y vitamina B12 no se asociaron con el riesgo de depresión.

Conclusión: entre los adultos mayores desnutridos se observó un aumento en el riesgo de depresión, independientemente del ácido fólico y del estado de la vitamina B12. Estos resultados ponen de manifiesto la necesidad de implementar estrategias preventivas, especialmente dirigidas a los adultos mayores que viven en hogares de cuidado.

DOI:10.3305/nh.2015.32.1.8880
Introduction

According to the World Health Organization, the number of people aged 80 years or older will almost quadruple to 395 million between now and 2050, leading to increased attention of health professionals on this age group\(^1\). Depressive disorders are amongst the most common mental health problems in older adults with a serious burden\(^2-4\) affecting circa one quarter of care homes non-demented residents\(^5\).

Undernutrition is also a common problem in the elderly. A multinational pooled analysis using the Mini Nutritional Assessment (MNA) tool showed a prevalence of undernutrition of 39% in hospitals, 14% in older adults living in nursing homes and approximately 6% of those who reside in the community\(^6\). The prevalence of undernutrition risk reported in this analysis is even higher, being 47% in hospitals, 54% in nursing homes and 32% in the community\(^6\). Undernutrition is related to unfavourable outcomes such as a decline in functional status, immune dysfunction, higher hospital and readmission rates, as well as with a poor quality of life and higher mortality\(^7\).

Through multivariate cross-sectional analyses, it has been shown that undernutrition identified by the MNA was independently associated with depressive symptoms amongst community dwelling older adults\(^8,9\). On the other hand, depressive symptoms have been also linked to an increased undernutrition risk\(^7,8,10,11\).

Moreover, undernutrition and depression, share some common risk factors. The deterioration of nutritional status and the appearance of depressive symptoms in older adults are related to decreased food intake, disease, polypharmacy, and social problems\(^2\). Ageing related disturbances on appetite and nutrient absorption, transport, and metabolism are contributing factors for nutrient deficiencies, namely for vitamin B12 and folate\(^12,13\). Low vitamin B12 and folate levels have been associated with increased melancholic depressive symptoms in older adults\(^14,15\).

The available evidence linking undernutrition and depression in older adults is based on nutritional status assessment using the MNA\(^7,8,11\) or relying specifically on anthropometry\(^16\). Although MNA is a validated and widely recognized scale for nutritional assessment, micronutrient low levels and deficiencies such as of vitamin B12 and of folic acid may go undetected unless serum levels are measured. The question on whether undernutrition remains linked to depressive symptoms, considering the effect of these deficiencies, is of practical relevance because they are potentially preventable and treatable. This study aims to further increase the knowledge about the association between undernutrition and depression amongst institutionalized older adults while taking into consideration vitamin B12 and folate plasma levels.

Methods

Study design and population

A cross-sectional study was conducted in a convenience sample of 84 older adults, residing in care homes in northern, central and rural Portugal, who volunteered for this study.

Two interviewers worked on data collection during the same period. In order to improve intra and inter interviewer agreement, all the procedures were previously trained.

The Abbreviated Mental Test Score (AMTS)\(^17\) was used to assess cognitive function. It consists of 10 questions and each question correctly answered scores one point. Inclusion criterion was having a score higher than 7 ensuring there was not cognitive impairment. Participants were asked about demographics and life style. Functional status was assessed and anthropometric data were collected. Nutritional status and depressive symptoms were assessed with questionnaires. Laboratory levels of vitamin B12 and folic acid were measured.

General, life-style and functional characteristics

Demographical and social information which include sex, age, marital status and education level (number of completed years of schooling) was collected. Participants were asked if they were current smokers, ex-smokers or never smoked, and whether they were current alcohol users or not. The practice of programmed physical activity during the week was also asked, as well as the type of activity, duration and frequency. Participants were asked about the number of drugs and this information was checked by the caregiver.

Functional characteristics such as activities of daily life were assessed with Barthel Index\(^11\). It is scored out of 100 points with 10 different activities. In the original version, a patient who scores 100 is continent, independent in feeding, bathing, dressing, getting in and out of bed, can walk at least one block and can ascend and descend stairs without help. A score of 0-20 suggests a total dependence, 21-60 severe dependence, 61-90 moderate dependence and 91-99 slight dependence. Independent and slight dependent participants were grouped into a single class (“independence”) and participants with severe or total dependence were the same.
The handgrip strength (HGS) was measured by a previously calibrated Jamar mechanical handgrip dynamometer according to procedures described by American Society of Hand Therapists. As HGS is higher among men, sex-specific tertiles were determined. High strength was defined as above 16.0 KgF in female and 25.0 KgF in male. Intermediate strength was considered between 12.0 and 16.0 KgF in female and between 19.5 and 25.0 KgF in male.

Anthropometric measurements and nutritional status

Anthropometric data were collected applying standard procedures. Patients were weighed wearing light clothes, using a mechanical scale to the nearest 0.1 kg. Height was measured with a fixed tape to the nearest 0.1 cm. If height was impossible to obtain, it was estimated by knee height through formulas. Weight and height were used to calculate body mass index (BMI, BMI = weight [kg] / (height [m])²), and it was categorized according to the recommendations of World Health Organization. For patients with oedema, weight and BMI data were not considered. Knee height, mid-arm circumference and calf circumference were measured with a tape to the nearest 0.1 cm.

Nutritional status was evaluated with the MNA, a validated questionnaire for older adults, recommended by the European Society for Clinical Nutrition and Metabolism (ESPEN). The questionnaire consists of 18 questions about anthropometric and dietary assessment, weight loss, health status, mobility and living situation. A score below 17 points indicates undernutrition, a score between 17 and 23.5 points indicates a risk of undernutrition and a score of 24 or higher indicates a normal nutritional status.

Laboratory parameters

Blood samples were collected from participants following an overnight fast. Measurement of laboratory parameters was performed using chemiluminescence (Immulite® 2000, Siemens), according to the cut-offs defined for serum vitamin B12 (deficiency: <400 pg/ml) and folic acid (deficiency: <3 ng/ml).

Depressive symptoms

The Epidemiologic Studies Depression Scale (CES-D) was used to measure depressive symptoms. CES-D has been shown to be a valid and reliable measure of current symptoms in Caucasian and African-American populations. It assesses the frequency of depressive symptoms in the past week on a scale from 0 (rarely) to 3 (most or all of the time). Responses to the 20 items are summed for a total score ranging from 0 to 60. CES-D scores of 16 or higher indicate a high and clinically significant level of depressive symptoms.

Data analyses

Categorical variables were summarized as counts and proportions, and compared using the chi-square test. Means and their standard deviation values were presented for normal distributed data and were compared with Student’s t-test. Undernourished and at undernutrition risk older adults were grouped into a single class. All analyses were stratified according to the risk of depression. Logistic regression model was used to quantify the association between undernutrition and other variables with the presence of a high level of depressive symptoms. Odds ratios and respective confidence intervals at 95% were calculated. P value < 0.05 was considered significant. All analyses were carried out using SPSS® software, version 20.0 for Windows® XP.

Ethics

This study was approved by the Ethics Committee for Health of the Centro Hospitalar S. João, EPE, Porto, Portugal and by the institutional boards of care homes. It was conducted according to the Declaration of Helsinki.

Results

Age of participants ranged from 65 to 101 years with a mean (standard deviation) of 82.1 (6.3) years. Fifty three older adults were at depression risk (63.1%), with the majority being females (75.5%) and 71.7% being widows (Table I). Regarding life-style characteristics, 16.7% of the study participants used to undertake physical activity during the week. Among these, 50% used to walk on foot, 35.7% went to the gym and 14.3% participated in dance sessions. On average, they used to walk for 90 minutes, 6 times per week; gym was practiced during 45 minutes, twice a week, and the dance lasted 90 minutes, once a week. Among participants who undertook programmed physical activity, approximately 57% did not present or presented a low level of depressive symptoms. According to Barthel Index, 78.6% of practitioners were totally independent and 21.4% had a slight dependence, and half of them showed high hand grip strength.

Considering BMI categories classification, 2.4% of the participants were classified as being underweight and 26.2% were obese. According to MNA, 3.6% were undernourished, 22.6% were at risk of undernutrition; 81.8% of participants at risk of undernutrition/undernutrition were classified with depression risk.
Although a high frequency of older adults with low plasma levels of vitamin B12 (42.9%) and lower of folic acid (5.9%) was found no significant differences concerning depressive symptoms were identified (Table II).

In the logistic regression analysis, being male was associated with a lower risk of having depressive symptoms, whereas not being married was related with a significant increase of this risk (Table III). Amongst undernourished participants and participants in risk of

<table>
<thead>
<tr>
<th>Table I</th>
<th>General, life-style and functional characteristics of the sample according to the risk of depression (CES – D ≥ 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center for Epidemiologic Studies Depression Scale (CES – D)</td>
</tr>
<tr>
<td></td>
<td>Without depression risk</td>
</tr>
<tr>
<td></td>
<td>Without depression risk</td>
</tr>
<tr>
<td></td>
<td>With depression risk</td>
</tr>
<tr>
<td></td>
<td>n = 31 (36.9%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>13 (41.9)</td>
</tr>
<tr>
<td>Male</td>
<td>18 (58.1)</td>
</tr>
<tr>
<td>Age, mean (standard deviation)</td>
<td>81.4 (5.2)</td>
</tr>
<tr>
<td>Country area, n (%)</td>
<td></td>
</tr>
<tr>
<td>North coast</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>Central coast</td>
<td>15 (48.4)</td>
</tr>
<tr>
<td>Countryside</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3 (9.7)</td>
</tr>
<tr>
<td>Married</td>
<td>11 (35.5)</td>
</tr>
<tr>
<td>Divorced</td>
<td>1 (3.2)</td>
</tr>
<tr>
<td>Widowed</td>
<td>16 (51.6)</td>
</tr>
<tr>
<td>Education (completed years), n (%)</td>
<td></td>
</tr>
<tr>
<td>0 years</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>1 a 4 years</td>
<td>15 (48.4)</td>
</tr>
<tr>
<td>≥ 5 years</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never smoked</td>
<td>22 (71.0)</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>1 (3.2)</td>
</tr>
<tr>
<td>Alcohol use (current), n (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>17 (54.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>14 (45.2)</td>
</tr>
<tr>
<td>Practice of physical activity (at week), n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (25.8)</td>
</tr>
<tr>
<td>No</td>
<td>23 (74.2)</td>
</tr>
<tr>
<td>Barthel Index, n (%)</td>
<td></td>
</tr>
<tr>
<td>Independence</td>
<td>18 (58.1)</td>
</tr>
<tr>
<td>Moderate dependence</td>
<td>13 (41.9)</td>
</tr>
<tr>
<td>Severe dependence</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Handgrip strength (KgF)**, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female: high</td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>intermediate</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>low</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>Male: high</td>
<td>7 (38.9)</td>
</tr>
<tr>
<td>intermediate</td>
<td>6 (33.3)</td>
</tr>
<tr>
<td>low</td>
<td>5 (27.8)</td>
</tr>
</tbody>
</table>

* p < 0.05; ** High strength was defined as above 16.0 KgF in female and 25.0 KgF in male. Intermediate strength was considered between 12.0 and 16.0 KgF in female and between 19.5 and 25.0 KgF in male.
undernutrition more than 3-fold increase in risk of depression was observed whereas having low levels of folic acid and Vitamins B12 was not associated with risk of depression. (Table III).

Discussion

Present study results show that nutritional status is related to depressive symptoms in institutionalized older adults, accounting for the effect of gender, marital status, folic acid and vitamin B12 serum levels.

According to our results, 26.2% of older adults were at risk of undernutrition/undernourished. Multimorbidity, reduction of some physiological abilities and a disadvantaged socio-economic situation also contribute to a high prevalence of undernutrition in older adults. According to a recent revision, approximately 20% of nursing home residents had some form of undernutrition, with prevalences ranging from 1.5 to 66.5%.[3]

Serrano-Urrea, R et al. reported a higher prevalence of undernutrition and risk of undernutrition of 40.1% in institutionalized older adults. As our sample was restricted to those older adults who volunteered to participate in the study and without cognitive impairment, undernutrition frequency reported here may be lower than in other samples including non-collaborating elders, who are more likely to be undernourished.

A very high proportion of our participants, circa two thirds (63%), had a high and clinically significant level of depressive symptoms risk of depression in the preceding week. These results were similar to those reported by Pérez Cruz E et al. (63.9%), despite the different scales used to measure depressive symptoms.[27]

Depression and cognitive impairment are two common mental health problems among older adults.[2-4] In a representative sample of residential and nursing care home residents, high prevalence of depressive and/or behavioural symptoms and psychotropic use suggested significant unmet need.[28] These results highlight the need to implement preventive strategies.

Depressive symptoms have a relevant impact on health and consequently on nutritional status. Depression is the most commonly diagnosed cause of pa-
Undernutrition, serum vitamin B12, folic acid and depressive symptoms in older adults

Undernutrition, serum vitamin B12, folic acid and depressive symptoms in older adults

359
homes and shows that these results are not modified by vitamin B12 and folate serum levels.

In conclusion, MNA score was significantly associated to the risk of depression, independently of folic acid and vitamin B12 status. Amongst undernourished and at risk of undernutrition older adults, more than threefold increase in risk of depression was observed. As undernutrition is potentially preventable and treatable these results highlight the need to implement preventive strategies, particularly directed to older adults living in care homes.

Acknowledgements

The authors acknowledge to iBeSa (Instituto de Bebidas e Saúde) the financial support to serum Vitamin B12 and folic acid evaluation. This sponsor had no involvement in the study design, in the collection, analysis or interpretation of data, in the writing of the manuscript and in the decision to submit the manuscript for publication.

Disclosure statement

The authors have no financial interest or benefit that arises from the direct application of this research.

References