Body composition changes during a multidisciplinary treatment programme in overweight adolescents: EVASYON Study

Pilar De Miguel-Etayo1,2, Luis A Moreno1,2, Javier Santabárbara1, Gloria Bueno1,3, Miguel Martín-Matílles5,6, Belén Zapatera1, Cristina Azcona-San Julián1,9, Amelia Martí1,11, Cristina Campoy12,13, Ascensión Marcos7 and Jesús M. Garagorri1,2 en nombre del Grupo de Estudio EVASYON

1GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza. 2Department of Psychiatry and Nursing, Faculty of Health Sciences, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA. 3Department of Paediatrics, Faculty of Medicine, University of Zaragoza, Zaragoza. 4Department of Preventive Medicine and Public Health, University of Zaragoza, Zaragoza. 5Department of Physical Education and Sport. School of Sport Sciences, University of Granada, Granada. 6PROFITH (PROmoting FITness and Health through physical activity) Research Group, University of Granada, Granada. 7Immunonutrition Research Group, Dep. Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN), Madrid. 8Paediatric Endocrinology Unit, Department of Pediatrics. Clínica Universidad de Navarra, Pamplona, Navarra. 9Instituto de Investigación Sanitaria de Navarra, Pamplona, Navarra. 10CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid. 12Department of Paediatrics. School of Sport Sciences. University of Granada, Granada. 13EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, Health Sciences Technological Park, University of Granada, Granada, Spain.

Abstract

Introduction: the main objectives of weight-loss interventions are to decrease fat mass while maintaining fat-free mass.

Objective: our aim was to address effectiveness body composition changes in overweight adolescents assessed by different body composition methods following an obesity intervention programme.

Material and methods: the life-style intervention was multi-disciplinary, with 13 months follow-up. Participants were 13-to-16 year-old overweight, or obese, Spanish adolescents. The adolescents (n=156; 54.8% females) had body composition measured with anthropometry, dual-energy X-ray absorptiometry and air-displacement plethysmography. All measurements were made at baseline, and after 2- and 13-months. Repeated measures analysis of covariance to compare mean anthropometric changes over time and the Bonferroni correction were applied. Imputation of anthropometric measures was performed.

Results: a high significant decrease in fat mass index was achieved in males after 2-and 13-months of intervention as measured by anthropometry (1.16 and 1.56 kg/m², respectively), X-ray absorptiometry (1.51 and 1.91 kg/m²) and plethysmography (2.13 and 2.44 kg/m²). Moreover, a short and long-term maintenance of fat-and fat-free mass index was observed by X-ray absorptiometry in females (0.94 and 0.68 kg/m²).

Resumen

Introducción: el principal objetivo de las intervenciones de pérdida de peso es disminuir la masa grasa manteniendo la masa libre de grasa.

Objetivo: evaluar la efectividad de una intervención multidisciplinar en la composición corporal de adolescentes con sobrepeso, evaluados mediante diferentes métodos de composición corporal.

Material y métodos: la intervención fue multidisciplinar sobre el estilo de vida, aplicada durante 13 meses. Los participantes eran adolescentes entre 13 y 16 años con sobrepeso y obesidad. Los adolescentes (n=156; 54.8% mujeres) fueron evaluados mediante antropometría, absorciometría dual de rayos X y plethsmografía por desplazamiento de aire. Todas las mediciones se realizaron al inicio, a los 2 y a los 13 meses. Se aplicaron análisis de la covarianza de medidas repetidas y la corrección de Bonferroni. Se realizó la imputación de las medidas antropométricas.

Resultados: se logró una alta disminución significativa en el índice de masa grasa en los hombres después de 2 y 13 meses de intervención, según antropometría (1,16 y 1,56 kg/m², respectivamente), absorciometría de rayos X (1,51 y 1,91 kg/m²) y plethsmografía (2,13 y 2,44 kg/m²). Por otra parte, el mantenimiento a corto y largo plazo de la grasa y libre de grasa en el índice de masa fue observado por absorciometría de rayos X en las mujeres (0,94 y 0,68 kg/m²).
Conclusion: our multidisciplinary approach to lifestyle intervention has a favourable impact on body fat mass and fat-free mass index as well as waist-to-height ratio, over 13 months intervention in overweight and obese adolescents.

(Nutr Hosp. 2015;32:2525-2534)
DOI:10.3305/nh.2015.32.6.9663

Key words: Adolescents. Body composition. Dual energy X-Ray Absorptiometry. Intention to treat analysis. Weight loss programs.

Conclusion: la intervención multidisciplinar sobre estilo de vida tiene un impacto favorable en la masa grasa corporal y el índice de masa libre de grasa, así como en la relación cintura-altura, durante 13 meses de intervención en adolescentes con sobrepeso y obesidad.

(Nutr Hosp. 2015;32:2525-2534)
DOI:10.3305/nh.2015.32.6.9663

Materials and methods

Study design

The EVASYON study was a programme applied to Spanish adolescents from five cities: Granada, Madrid, Pamplona, Santander and Zaragoza. The participants were adolescents aged 13–16 years, classified as overweight or obese. The intervention was family orientated and multidisciplinary (diet, physical activity and psychological support).

The project followed the ethical standards of the Declaration of Helsinki and Good Clinical Practice recommendations. The study was approved by the Ethics Committee of each participating hospital and by the Bioethics Committee of the Spanish National Research Council (CSIC). The volunteer and/or guardian provided fully-informed written consent to participation.

The participants were recruited among those attending the local obesity clinic. Inclusion criteria were: 1) aged 13-16 years; 2) overweight or obese according to the criteria of Cole et al.; 3) of Spanish ancestry, or being educated in Spain; and 4) no concomitant diseases.

All body composition measurements were performed at baseline, at the end of the intensive intervention (2 months), at midpoint of the extensive intervention (6 months), and at the end of the EVASYON treatment programme (13 months). In the current article we present only the results at the end of the intensive and the extensive intervention periods.

Study population

Based on previous intervention studies in obese adolescents, we sought to achieve a goal of 2.7%
Body composition changes during a multidisciplinary treatment programme in overweight adolescents: EVASYON Study

Body composition changes during a multidisciplinary treatment programme in overweight adolescents: EVASYON Study

reduction in total body fat i.e. a “clinically relevant effect” with a statistical power of 90% and an alpha error of 0.05, the estimated sample size was 153 participants. This sample size was increased by 25% to account for potential dropouts and loss-to-follow-up in the participating hospitals. The recruited sample comprised 206 adolescents (84 males and 122 females). As not all children had body composition assessment by the different techniques, analysis groups and sample sizes vary (Fig. 1). Of the adolescents initially recruited, 72.6% (48.0% males) completed the 13months of the intervention programme.

Intervention

The EVASYON treatment programme was conducted in small groups of 9-to-11 subjects over a period of 13 months.

The dietary intervention has been described by Marqués et al. Baseline metabolic rate was assessed according to Schofield equations, and the physical activity factor was approximated as 1.3. The percentage energy restriction was adapted to excess BMI categories according to reference values obtained in Spanish adolescents.

The intensive nutritional therapy had moderate calorie restriction (10-40%) over three weeks applying a fixed full-day meal plan, and six weeks fixed full-day meal plans with food-item and portion exchange. The extensive intervention period had flexible meal plans based on food exchanges. The diets were designed in accordance with macro- and micro-nutrient recommendations.

Physical activity intervention was based on the individual's initial physical activity level. This was to programme a progressive increase in the individual's physical activity while reducing sedentary behaviour.

In the intensive intervention, the main goal was to achieve at least 60 minutes of moderate or vigorous physical activity (MVPA) 3 days per week. Later, the goal was to achieve at least 60 minutes of MVPA, 5 days per week. In the extensive intervention the goal was, in addition, that the adolescents should increase physical activity in all daily-life activities.

Individual and family-based psychological support was provided to encourage achievable long-term life-style goals. During the intensive intervention, psy-

Fig. 1.—Flow chart of the participant population involved in this study from the EVASYON Study.

adolescents were not included in the analyses because, for technical reasons, the participating centre was unable to complete the research protocol.
cho-educational workshops focused on eating and physical activity. During the extensive intervention period, psycho-educational progress was monitored, and positive attitudes reinforced.

Body composition measurements

Body composition was assessed by anthropometry in the overall study sample. In addition we also measured body composition with DXA and ADP in some Centres. The anthropometric measurements were according to the standardised protocols of the AVENA study. Measurements were performed by the same trained investigators in each Centre. Each set of variables was measured 3 times. Weight and height were obtained by standardised procedures. Body mass index (BMI) was calculated as weight/height squared (kg/m²). Skinfold thicknesses were measured to the nearest 0.1 mm on the left side of the body using a skin-fold calliper (Holtain Calliper; Holtain Ltd., Wales, UK) at the following sites: 1) triceps, 2) biceps, 3) subscapular and 4) supra-iliac. Percentage of total body fat was calculated using the Slaughter et al. equations. Fat-free mass (FFM) was calculated from total body weight and percentage FM. Body fat and FFM are usually expressed as percentage of total body weight, but an alternative is to express these variables as height squared since more valuable indices are obtained including: FMI [FM (kg)/height (m²)] and fat-free mass index (FFMI) [FFM (kg)/height (m²)]

Circumferences were measured to the nearest millimetre with an inelastic tape, with the subject standing upright. Waist (WC) and hip circumference (HC) were measured according to the standardised protocols of the AVENA study. Waist-to-hip ratio (W-to-H) and waist-to-height ratio (WHtR) were also calculated as indices of abdominal fat.

According to sex-specific BMI, FM (%), W-to-H and WHtR reference curves for Spanish adolescents aged 13-18 years, we calculated the z-score indices in our obese adolescents in order to normalize the changes. However, cut-off points of FMI and FFMI were calculated to normalize the changes using a sample from AVENA Study which include 2851 Spanish adolescents (52.5% females, 15.29±1.33 years old, 21.63±3.44 kg/m²) (unpublished results).

Dual-energy X-ray absorptiometry (DXA)

The adolescents from two Centres had their body composition assessed by DXA. In both cities, we used the QDR-Explorer (Hologic Corp. Software version 12.4, Waltham, Mass., USA). Whole body irradiation was slight (calculated as being between 0.05 and 1.5 mrem). The measurements at baseline, at 2 months and at the end of the treatment programme for each subject were performed with the same DXA machine which was regularly calibrated using a lumbar spine phantom. Scanning was with the subject in the supine position, in light underwear without any metallic jewellery. Measurements of bone density are via a thin beam of low-dose X-rays which produce images of the skeleton and fat mass. FM and lean mass (LM) measurements did not include the head. FM and LM are usually expressed as percentage of total body weight, but an alternative is to express these variables as height squared since more valuable indices are obtained including: FMI [FM (kg)/height (m²)] and lean-body mass index (LBMI) [LM (kg)/height (m²)]

Air Displacement Plethysmography (ADP-BodPod®)

The adolescents from one Centre had body composition assessed by ADP. The BodPod was calibrated prior to each analysis according to the manufacturer’s guidelines. Subjects wore clothing a swimsuit and a swim cap to rule out any air trapped in clothes and hair. Participants were weighed on the BodPod calibrated digital scale and then entered the BodPod chamber. Body volume was measured twice for reliability and, if the readings differed by >150 mL, a third measurement was taken. Thoracic gas volume was predictive following the manufacturer’s recommendations. This value was integrated into the calculation of body volume. Percentage total body fat was calculated using the Siri equations.

Statistical analysis

Analyses for males and females were performed separately. Values of the measured variables are presented as mean and standard deviation (± SD) with normality of distribution evaluated with the Kolmogorov-Smirnov test with the Lilliefors correction. Analysis of covariance (ANCOVA), adjusted for age at baseline, and analysis of variance (ANOVA) was used to compare mean anthropometric changes and mean z-score anthropometric changes over time, respectively. Post-hoc comparisons were conducted with the Bonferroni correction applied. Imputation of anthropometric measures at 2 and 13-months of follow-up were performed to improve sensitivity analysis; participants lost to follow-up being considered as having baseline values during follow-up.

Differences in outcomes were considered statistically significant at a p < 0.05. All analyses were performed with the IBM SPSS package v.19 (IBM Corp., New York, USA).

Results

Initially, 156 participants were recruited. Hence, the study sample included 71 males and 85 females.
(14.5±1.1 and 14.7±1.3 years old, respectively). Compared to the females, males at baseline were heavier, taller, greater fat mass percentage, greater FMI, W-to-H and WHR (all p<0.05) (Table I).

In those with DXA measurements, males had higher LM (kg, %) (p<0.05) and lower FMI (12.01±2.13 vs. 13.46±3.84 kg/m², p=ns) than females.

In those with ADP measurements, FFM (kg) was higher in males than in females while FM was higher in females than in males, albeit these differences did not reach statistical significance.

Short term body composition changes

The 2-months intensive intervention programme achieved a considerable weight loss (4.27 and 3.35 kg, p<0.05) in males and females, respectively, while height increased by 0.73 and 0.54 cm (p<0.05) in males and females. Consequently BMI decreased by 1.79 and 1.60, kg/m² (p<0.05) in males and females, and FMI also decreased by 1.16 kg/m² (p<0.05) in males (Table I).

Following 2-months of multidisciplinary intervention, in those with DXA measurements, statistically significant decreases in LM (1.41 and 2.3 kg, p<0.05) (Table I) and lean body mass index (LBMI; 0.73 and 0.94, kg/m², p<0.05) were observed in males as well as females (Fig. 2). Further, males showed statistically significant reductions in FM (4.03 kg and 2.33%, p<0.05) (Table I) and FMI (1.51 kg/m², p<0.05) as well as increases in LM percentage (2.33%, p<0.05) (Fig. 3).

In those with ADP measurements 2-months involve in a multidisciplinary intervention, a significant decrease was observed in FM (percentage, kg) (5.01% and 5.93 kg, p<0.05) and FMI (2.13 kg/m², p<0.05) but only in males (Table I).
Table I
Characteristics of the participants during the programme (measurements at baseline and 2 and 13 months of follow-up)

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Baseline 2 months 13 months p for trend</td>
<td>N Baseline 2 months 13 months p for trend</td>
</tr>
<tr>
<td>Anthropometric Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>71 14.51 ± 1.07 - - -</td>
<td>85 14.68 ± 1.32 - - -</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>71 90.00 ± 14.94 85.73 ± 14.92a 88.88 ± 16.12c</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>71 167.65 ± 6.45 168.38 ± 6.32a 170.87 ± 7.45bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fat Mass (%)†</td>
<td>71 36.93 ± 3.66 34.92 ± 4.79a 33.03 ± 6.72bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fat-free Mass (%)‡</td>
<td>71 63.06 ± 3.66 65.07 ± 4.79a 67.92 ± 6.26bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Body Mass Index (BMI) (kg/m²)</td>
<td>71 31.82 ± 4.48 30.03 ± 4.68a 30.39 ± 5.12b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fat Mass Index (FMI) (kg/m²)§</td>
<td>71 11.85 ± 2.50 10.69 ± 2.79a 10.29 ± 3.41b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fat-free Mass Index (FFMI) (kg/m²)§</td>
<td>71 19.78 ± 2.27 19.43 ± 2.32a 20.12 ± 2.32c</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waist-to-Hip Ratio</td>
<td>70 0.94 ± 0.06 0.93 ± 0.06 0.91 ± 0.08bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waist-to-Height Ratio</td>
<td>71 0.62 ± 0.06 0.59 ± 0.07a 0.58 ± 0.08bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Dual-energy X-ray absorptiometry (DXA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td>38 34.31 ± 7.43 30.28 ± 7.89a 29.62 ± 8.95b</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Lean Mass (kg)</td>
<td>38 47.45 ± 6.66 46.04 ± 6.09a 47.75 ± 6.66c</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Percentage Fat Mass (%)</td>
<td>38 40.77 ± 4.69 38.44 ± 6.03a 36.13 ± 7.26bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Percentage Lean Mass (%)‡</td>
<td>38 59.23 ± 4.69 61.56 ± 6.03a 63.87 ± 7.26bc</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Air Displacement Plethysmography (ADP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat Mass (kg)</td>
<td>21 39.98 ± 9.69 34.05 ± 9.57a 33.68 ± 10.24b</td>
<td>0.004</td>
</tr>
<tr>
<td>Fat-free Mass (kg)</td>
<td>21 49.41 ± 8.85 50.89 ± 7.81 51.75 ± 9.14a</td>
<td>0.031</td>
</tr>
<tr>
<td>Fat Mass (%)</td>
<td>21 44.75 ± 8.61 39.74 ± 8.18a 39.35 ± 9.95b</td>
<td>0.001</td>
</tr>
<tr>
<td>Fat-free Mass (%)‡</td>
<td>21 55.24 ± 8.61 60.25 ± 8.18a 60.46 ± 9.95b</td>
<td>0.001</td>
</tr>
<tr>
<td>Fat Mass Index (FMI) (kg/m²)§</td>
<td>21 24.06 ± 2.77 11.93 ± 3.13a 11.62 ± 3.42d</td>
<td>0.002</td>
</tr>
<tr>
<td>Fat-free Mass Index (FFMI) (kg/m²)§</td>
<td>21 17.36 ± 2.54 17.69 ± 2.42 17.65 ± 2.38d</td>
<td>0.270</td>
</tr>
</tbody>
</table>

Values are the differences between baseline and follow-up at 2 and 13 months (mean ±SD). The inferential analysis was performed with the common variables using repeated measures ANCOVA test with Bonferroni correction used for mean comparisons of values during the programme, adjusted by age at baseline. †Fat Mass (%) calculated according to Slaughter’s equation by age and gender. ‡Fat Free Mass (%) calculated according to 100-FM (%), assessed by Anthropometry, DXA and ADP. §Fat Mass Index and Fat-free Mass Index calculated according to Fat Mass (kg) and Fat-free Mass (kg) assessed by Anthropometry. †Fat Mass Index and Fat-free Mass Index calculated according to Fat Mass (kg) and Fat-free Mass (kg) assessed by ADP. †Baseline vs. 2 months, p < 0.05; †Baseline vs. 13 months, p < 0.05; †Boys vs. girls at the same time points, p < 0.05.
Body composition changes during a multidisciplinary treatment programme in overweight adolescents: EV ASYON Study

Discussion

Regarding the normalized characteristics from our adolescents (Table II, compared to the females, males had higher FM- and W/H- z-score at baseline. In contrast, females had higher FM- and W/H- z-score at baseline). These higher changes than maintained after 2 and 13-months (Table II).

Long-term body composition changes in DXA measurements, there were significant decreases in FM (1.91 and 1.16 kg/m², p < 0.05) and W/H (0.03, p < 0.05) at baseline. In contrast, females had higher FM- and W/H- z-score at baseline. These higher changes than maintained after 2 and 13-months (Table II).

Table II

<table>
<thead>
<tr>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Baseline</td>
</tr>
<tr>
<td>71</td>
<td>1.94±4.21</td>
</tr>
<tr>
<td>84</td>
<td>1.119±5.86d</td>
</tr>
<tr>
<td>Fat Mass z-score (FM z-score) (%)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2.58±1.10</td>
</tr>
<tr>
<td>85</td>
<td>2.70±0.97</td>
</tr>
<tr>
<td>Body Mass Index z-score (BMI z-score) (kg/m²)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2.95±1.00</td>
</tr>
<tr>
<td>84</td>
<td>2.21±7.69d</td>
</tr>
<tr>
<td>Fat Index z-score (FMI z-score) (kg/m²)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2.83±6.82d</td>
</tr>
<tr>
<td>84</td>
<td>4.28±1.44a</td>
</tr>
<tr>
<td>Waist-to-Hip Ratio z-score</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1.88±0.89</td>
</tr>
<tr>
<td>84</td>
<td>1.58±8.61d</td>
</tr>
<tr>
<td>Waist-to-Height Ratio z-score</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>2.99±1.12</td>
</tr>
<tr>
<td>84</td>
<td>2.89±1.03</td>
</tr>
</tbody>
</table>

Values are the differences between baseline and follow-up at 2 and 13 months (mean ± SD). The inferential analysis was performed with the common variables using repeated measures ANOVA test with Bonferroni correction used for mean comparisons of values during the programme. Fat Mass (%) calculated according to Slaughter’s equation by age and gender. Fat Free Mass (%) calculated according to 100-FM (%), assessed by Anthropometry, BMI and ADP. Fat Mass Index and Fat-free Mass Index calculated according to Fat Mass (kg) and Fat-free Mass (kg) assessed by Anthropometry. Fat Mass Index and Fat-free Mass Index calculated according to Fat Mass (kg) and Fat-free Mass (kg) assessed by ADP. Baseline vs. 2 months, p < 0.05; Baseline vs. 13 months, p < 0.05; 2 months vs. 13 months, p < 0.05; Boys vs. girls at the same time points, p < 0.05.
BMI was the best anthropometric index identifying body fat composition changes during the obesity treatment programme together with the more sensitive FMI. FMI and FFMI enabled appropriate comparisons to be made of the changes in fat-or fat-free mass between adolescents of different heights. Our results for FMI and FFMI were obtained from anthropometric, DXA (LBMI) and ADP measurements.

FMI and FFMI have not been widely used to assess obese adolescents. However, cut-off points for FMI and FFMI were recently established by Wells et al.24 applying the 4-component model of body-composition assessment. Further, in a US population, Weber et al.25 using DXA, proposed sex-specific FMI and LBMI reference curves for children and adolescents aged 8-20 years.

WC is a surrogate marker of abdominal fat and is strongly associated with cardiovascular disease (CVD) risk factors26. Recently, other indices of abdominal obesity such as W-to-H and WHtR have been reported as being better discriminators of CVD and metabolic obesity such as W-to-H and WHtR have been reported as being better discriminators of CVD and metabolic risk factors26. Recently, other indices of abdominal obesity such as W-to-H and WHtR have been reported as being better discriminators of CVD and metabolic syndrome (MetS) risk factors than BMI and/or WC. WHtR is suitable for screening of obesity and MetS in children and adolescents27. However, this does not reduce the clinical usefulness of W-to-H as a predictor of CVD risk28.

A cause of concern in any obesity-reduction intervention is to ensure that normal growth and development are not impeded. Our results showed appropriate height gain in both sexes during the programme. Few intervention studies in obese adolescents report height changes, but those that do have all showed appropriate height gains in child health units28,29. The results of weight-loss interventions on LM in adolescents have been very variable. Early studies using very low calorie diets and MVPA, achieved LM loss in children29. In our study, we used a moderate calorie restriction together with MVPA and the LM was conserved in males, and slightly decreased during treatment in females. This was observed when using DXA, our results were lower than those achieved by Shrewsbury et al.30 after 2-months intervention applying the social cognitive theory to change dietary intake and activity levels.

There were significant BMI decreases (> 1 kg/m²) in males and females after 2 months of the intervention. This is in accord with BMI changes observed after 3-months in intervention groups in other similar studies28. During 2-months of a residential treatment programme consisting of moderate calorie restriction in combination with PA and psychological support, Deforche et al.33 achieved higher BMI decreases. This could be due to the controlled environment of their intervention, as opposed to our free-living intervention.

Few intervention studies have addressed FMI changes. Hence, for comparison purposes, we have used the percentage FM value obtained after 2-months on the multidisciplinary treatment to assess fat mass goals. With respect to percentage body fat changes measured by anthropometry, our results were lower than the percentage body fat changes observed in the group studied by Nemet et al.34 after 3-months of intervention. With respect to the laboratory methods used, the males in our study had percentage body fat changes measured by DXA, and the values were higher than the changes obtained by Tsiros et al.35 after 10-weeks of intervention using the same method.

With respect to WHtR changes, our intervention programme achieved higher decreases in males than those achieved by Shrewsbury et al.30 after 2-months intervention applying the social cognitive theory to change dietary intake and activity levels.

The BMI changes observed by Caranti et al.34 were similar to those observed during our intensive intervention period. In our study there were no significant differences between males and females with respect to BMI changes. Similar multidisciplinary treatment programmes have shown greater losses in males than in females (3 vs. 1 kg/m² respectively) following 6-months intervention promoting changes in sedentary lifestyle and nutritional habits34, and higher losses in males than females following 9-months of a multidisciplinary weight-reduction programme in severely obese adolescents39.

The decrease in FMI was higher in males than females when taking into account all the body composition methods used. Caranti et al.34, using anthropometry, obtained results for percentage body fat, but not for FMI. They observed, in males and females, higher decreases in percentage body fat (8.22 and 6.19%, respectively) than we did using anthropometry (3.9%, in males) following 12-months on a multidisciplinary weight-reduction programme.

Maintaining appropriate levels of LM could help prevent cyclical weight gain. When using DXA, we observed a significant increase in LBMI in males and a significant decrease in females, although the effect sizes observed were lower in both genders. Lazzer et al.35, also using DXA, observed significant decreases in FFM in boys as well as in girls after 9-months in a clinical intervention. However, Ning et al.35, following 6-months in a lifestyle intervention programme, also observed (using DXA) a significant increase in LM in male and female obese adolescents. However, Caranti et al.34, following 12-months in a multidisciplinary treatment, observed significant increases in percentage FFM in males and females (7 and 6%, respectively). These findings are higher than the increases we observed using ADP.

W-to-H and WHR decreases were significant and were maintained in males and females on conclusion of the study at 13-months, relative to the intensive intervention period. Our results are in agreement with the short-term outcomes in WHtR observed in the Loootz Study36. This may indicate that weight loss is associated with a parallel decrease in visceral fat in obese adolescents.

Taking into account the sex-specific FM (%), BMI, W-to-H and WHtR reference curves for Spanish adolescents aged 13-18 years, our obese adolescents were, at least 1.0 score, over the standard population. Moreover, regarding the calculated cut-off points of FMI
and FFMI, our sample was over the mean population until 4.5 score.

Our results show short-term decreases of BMI z-score were obtained in both genders. Our BMI z-score losses were greater than in similar weight management programmes after 2-months and 6-months.

The main strength of our study is the use of three methods to assess body composition changes in overweight and obese adolescents. ADP is considered the reference standard for assessing body composition changes; DXA is considered a good tool to assess lean body mass, and anthropometry is the most widely used body composition method in clinical settings. Further, the intention-to-treat approach was conducted to increase general applicability. Imputation was performed for this analysis using a conservative approach. I.e. participants lost to follow-up were considered to have baseline values at follow-up.

The main limitation is that the study used data from a multidisciplinary weight-management programme which was designed without a comparison group. Despite the efforts to retain the adolescents within the programme, 28.2% did not complete the protocol. These results are similar those observed in other studies (20.00 to 59.75%). Our findings do not address lean body mass composition. Hydration of fat-free mass (20.00 to 59.75%). Our findings do not address lean body mass composition. Hydration of fat-free mass (20.00 to 59.75%).

cent BMI, FMI and WHtR over at least the 13-months period of the study, and which supports its effectiveness. In addition, FFMI was also maintained in male and female adolescents.

In conclusion, our multidisciplinary approach to lifestyle intervention has a favourable impact on adolescent BMI, FMI and WHtR over at least the 13-months period of the study, and which supports its effectiveness. In addition, FFMI was also maintained in male and female adolescents.

Appendix

The EVASYON Study Group

Overall study coordinator: Marcos A

Local clinical research teams in the participating Centres (Principal Investigators are underlined)

Pamplona: Martí A, Azcona-SanJulian C, Moleres A, Rendo T, Marqués M, Miranda MG, Martínez JA

Data management and statistical analyses: Wärnberg J, Calle ME, Barrios L

Statement of authorship

LM, JM-G, JS and PM-E conceived and designed the current study. LM, AM, CC, JM-G and AsM conceived and designed the EVASYON Study. JS and PM-E analysed and interpreted the data. PM-E, MM-M and BZ conducted the laboratory measurements. All authors were involved in writing the initial manuscript and approved the final version submitted for publication. The EVASYON Study Group provided logistics support in the course of the study. Editorial assistance was by Dr Peter R Turner of Tscimed.com the costs of whose services were met by in-house funds.

Conflict of interest statement

The authors not declare conflict of interest.

Acknowledgments

We gratefully acknowledge the enthusiasm and commitment of all the participating adolescents and their families. The EVASYON Group also acknowledges the field-work staff for their efforts and enthusiasm, especially: M. Marqués, A. Moleres, T. Rendo-Urteaga, M.J. Piqueras and P. Romero. The study was supported by: the Ministry of Health, Social Services and Equality; the Spanish Government (Carlos III Institute of Health. FIS. Grant PI051080, PI051579).

References