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Online Appendix 1. Types of analyses of time series econometric models 

DECOMPOSITION (CLASSICAL ANALYSIS) 

The classical analysis of time series consists of considering them in a nonrandom way and 

presupposing that the realization of the series can be conceived as originating from the 

aggregation of four effects or components (some may not exist): secular trend (T), cyclical 

variation (C), seasonal variation (S), and erratic variation (E). 

Two models of aggregation of these effects are usually considered: 

 additive: Yt = Tt + Ct + St + Et 

 multiplicative: Yt = Tt.Ct.St. Et (easily convertible to additive, by taking logarithms) 

Secular trend: This is the general component of the series and can be considered as the 

overall movement of the series in the long term, usually obtained or described by 

fitting a mathematical function or by moving averages or exponential smoothing. 

Cyclical variations: These are periodic oscillations that occur with a frequency of more 

than one year and are usually due to the alternation of periods of economic prosperity 

(peaks) with periods of depression (troughs). 

Seasonal variations: fluctuations with a periodicity of less than one year and 

recognizable every year, which are usually related to the weather or the behaviour of 

economic agents when the time of year changes. 

Erratic irregular or residual variation: which would reflect the variability in the 

behaviour of the series that is due to small, unpredictable causes. 
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HOLT-WINTERS MODEL 

The Holt Winters method is used to forecast the behaviour of a time series based on 

previously obtained data. The method is based on an iterative algorithm that at each time 

(month or week) makes a forecast of the behaviour of the series based on weighted 

averages of the previous data. 

 L t = α (Y t/S t – p) + (1 - α) [ L t – 1 + T t – 1 ] 

 T t = γ [ L t - L t – 1 ] + (1 - γ) T t – 1 

 S t = δ (Y t/L t) + (1 - δ) S t – p 

  = (L t – 1 + T t – 1) S t – p 
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Were: 

Lt the level at time t, α is the weighting for the level; Tt the trend at time t; γ the weighting 

for the trend; St the seasonal component at time t; δ the weighting for the seasonal 

component; p seasonal period; Yt the value of the data at time t; ^ Yt the fitted value, or 

one-period-ahead forecast, at time t 

 

 

ARIMA MODEL 

 

The extrapolation forecasts of a univariate ARIMA model were calculated for a time series 

Y [t] (for t = 1, 2..., T). The user can specify a cut-off period K, which implies that the 

ARIMA model is estimated based on Y [t] for t = 1, 2..., TK and such that the 

extrapolation forecast F [t] for t = T -K + 1..., T is calculated and compared with the actual 

values that were dropped: several extrapolation forecast statistics (MPE, RMSE, MAPE...) 

are calculated. In addition, the following probabilities P (F [t]> Y [t-1]), P (F [t]> Y [ts]) 

and P (F [t]> Y [TK]) are calculated. 
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In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving

average (ARMA) model. Both of these models are fitted to time series data either to better understand the data or to predict future points in the series (forecasting). ARIMA models are

applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the

"integrated" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.e., the trend).[1] When the seasonality shows in a time series, the

seasonal-differencing[2] could be applied to eliminate the seasonal component. Since the ARMA model, according to the Wold's decomposition theorem,[3][4][5] is theoretically sufficient to

describe a regular (a.k.a. purely nondeterministic[5]) wide-sense stationary time series, we are motivated to make stationary a non-stationary time series, e.g., by using differencing, before

we can use the ARMA model.[6] Note that if the time series contains a predictable sub-process (a.k.a. pure sine or complex-valued exponential process[4]), the predictable component is

treated as a non-zero-mean but periodic (i.e., seasonal) component in the ARIMA framework so that it is eliminated by the seasonal differencing.

The AR part of ARIMA indicates that the evolving variable of interest is regressed on its own lagged (i.e., prior) values. The MA part indicates that the regression error is actually a linear

combination of error terms whose values occurred contemporaneously and at various times in the past.[7] The I (for "integrated") indicates that the data values have been replaced with the

difference between their values and the previous values (and this differencing process may have been performed more than once). The purpose of each of these features is to make the

model fit the data as well as possible.

Non-seasonal ARIMA models are generally denoted ARIMA(p,d,q) where parameters p, d, and q are non-negative integers, p is the order (number of time lags) of the autoregressive

model, d is the degree of differencing (the number of times the data have had past values subtracted), and q is the order of the moving-average model. Seasonal ARIMA models are

usually denoted ARIMA(p,d,q)(P,D,Q)m, where m refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, differencing, and moving average

terms for the seasonal part of the ARIMA model.[8][2]

When two out of the three terms are zeros, the model may be referred to based on the non-zero parameter, dropping "AR", "I" or "MA" from the acronym describing the model. For

example,  is AR(1),  is I(1), and  is MA(1).

ARIMA models can be estimated following the Box–Jenkins approach.
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Definition [ edit ]

Given time series data Xt where t is an integer index and the Xt are real numbers, an  model is given by

or equivalently by

where  is the lag operator, the  are the parameters of the autoregressive part of the model, the  are the parameters of the moving average part and the  are error terms. The error

terms  are generally assumed to be independent, identically distributed variables sampled from a normal distribution with zero mean.

Assume now that the polynomial  has a unit root (a factor ) of multiplicity d. Then it can be rewritten as:

An ARIMA(p,d,q) process expresses this polynomial factorisation property with p=p'−d, and is given by:

and thus can be thought as a particular case of an ARMA(p+d,q) process having the autoregressive polynomial with d unit roots. (For this reason, no process that is accurately described

by an ARIMA model with d > 0 is wide-sense stationary.)

The above can be generalized as follows.

This defines an ARIMA(p,d,q) process with drift .

Other special forms [ edit ]

The explicit identification of the factorisation of the autoregression polynomial into factors as above, can be extended to other cases, firstly to apply to the moving average polynomial and

secondly to include other special factors. For example, having a factor  in a model is one way of including a non-stationary seasonality of period s into the model; this factor has

the effect of re-expressing the data as changes from s periods ago. Another example is the factor , which includes a (non-stationary) seasonality of period

2. [clarification needed] The effect of the first type of factor is to allow each season's value to drift separately over time, whereas with the second type values for adjacent seasons move

together. [clarification needed]

Identification and specification of appropriate factors in an ARIMA model can be an important step in modelling as it can allow a reduction in the overall number of parameters to be

estimated, while allowing the imposition on the model of types of behaviour that logic and experience suggest should be there.

Differencing [ edit ]

A stationary time series' properties do not depend on the time at which the series is observed. Specifically, for a wide-sense stationary time series, the mean and the

variance/autocovariance keep constant over time. Differencing in statistics is a transformation applied to a non-stationary time-series in order to make it stationary in the mean sense (viz.,

to remove the non-constant trend), but having nothing to do with the non-stationarity of the variance/autocovariance. Likewise, the seasonal differencing is applied to a seasonal time-

series to remove the seasonal component. From the perspective of signal processing, especially the Fourier spectral analysis theory, the trend is the low-frequency part in the spectrum of

a non-stationary time series, while the season is the periodic-frequency part in the spectrum of it. Therefore, the differencing works as a high-pass (i.e., low-stop) filter and the seasonal-

differencing as a comb filter to suppress the low-frequency trend and the periodic-frequency season in the spectrum domain (rather than directly in the time domain), respectively.[6] This

perspective explains the philosophy, mathematics, power, and drawbacks of the differencing and seasonal differencing.

To difference the data, the difference between consecutive observations is computed. Mathematically, this is shown as

Differencing removes the changes in the level of a time series, eliminating trend and seasonality and consequently stabilizing the mean of the time series.[6]

Sometimes it may be necessary to difference the data a second time to obtain a stationary time series, which is referred to as second order differencing:

Another method of differencing data is seasonal differencing, which involves computing the difference between an observation and the corresponding observation in the previous season

e.g a year. This is shown as:

The differenced data are then used for the estimation of an ARMA model.

Examples [ edit ]

Some well-known special cases arise naturally or are mathematically equivalent to other popular forecasting models. For example:

An ARIMA(0, 1, 0) model (or I(1) model) is given by  — which is simply a random walk.

An ARIMA(0, 1, 0) with a constant, given by  — which is a random walk with drift.

An ARIMA(0, 0, 0) model is a white noise model.

An ARIMA(0, 1, 2) model is a Damped Holt's model.

An ARIMA(0, 1, 1) model without constant is a basic exponential smoothing model.[9]

An ARIMA(0, 2, 2) model is given by  — which is equivalent to Holt's linear method with additive errors, or double

exponential smoothing.[9]

Choosing the order [ edit ]

The order p and q can be determined using the sample autocorrelation function (ACF), partial autocorrelation function (PACF), and/or extended autocorrelation function (EACF) method.[10]

Other alternative methods include AIC, BIC, etc.[10] To determine the order of a non-seasonal ARIMA model, a useful criterion is the Akaike information criterion (AIC). It is written as

where L is the likelihood of the data, p is the order of the autoregressive part and q is the order of the moving average part. The k represents the intercept of the ARIMA model. For AIC, if k

= 1 then there is an intercept in the ARIMA model (c ≠ 0) and if k = 0 then there is no intercept in the ARIMA model (c = 0).

The corrected AIC for ARIMA models can be written as

The Bayesian Information Criterion (BIC) can be written as

The objective is to minimize the AIC, AICc or BIC values for a good model. The lower the value of one of these criteria for a range of models being investigated, the better the model will

suit the data. The AIC and the BIC are used for two completely different purposes. While the AIC tries to approximate models towards the reality of the situation, the BIC attempts to find

the perfect fit. The BIC approach is often criticized as there never is a perfect fit to real-life complex data; however, it is still a useful method for selection as it penalizes models more

heavily for having more parameters than the AIC would.

AICc can only be used to compare ARIMA models with the same orders of differencing. For ARIMAs with different orders of differencing, RMSE can be used for model comparison.

Estimation of coefficients [ edit ]

This section is empty. You can

help by adding to it. (March 2017)

Forecasts using ARIMA models [ edit ]

The ARIMA model can be viewed as a "cascade" of two models. The first is non-stationary:

while the second is wide-sense stationary:

Now forecasts can be made for the process , using a generalization of the method of autoregressive forecasting.

Forecast intervals [ edit ]

The forecast intervals (confidence intervals for forecasts) for ARIMA models are based on assumptions that the residuals are uncorrelated and normally distributed. If either of these

assumptions does not hold, then the forecast intervals may be incorrect. For this reason, researchers plot the ACF and histogram of the residuals to check the assumptions before

producing forecast intervals.

95% forecast interval: , where  is the variance of .

For ,  for all ARIMA models regardless of parameters and orders.

For ARIMA(0,0,q), 

[citation needed]

In general, forecast intervals from ARIMA models will increase as the forecast horizon increases.

Variations and extensions [ edit ]

A number of variations on the ARIMA model are commonly employed. If multiple time series are used then the  can be thought of as vectors and a VARIMA model may be appropriate.

Sometimes a seasonal effect is suspected in the model; in that case, it is generally considered better to use a SARIMA (seasonal ARIMA) model than to increase the order of the AR or MA

parts of the model.[11] If the time-series is suspected to exhibit long-range dependence, then the d parameter may be allowed to have non-integer values in an autoregressive fractionally

integrated moving average model, which is also called a Fractional ARIMA (FARIMA or ARFIMA) model.

Software implementations [ edit ]

Various packages that apply methodology like Box–Jenkins parameter optimization are available to find the right parameters for the ARIMA model.

EViews: has extensive ARIMA and SARIMA capabilities.

Julia: contains an ARIMA implementation in the TimeModels package[12]

Mathematica: includes ARIMAProcess  function.

MATLAB: the Econometrics Toolbox  includes ARIMA models  and regression with ARIMA errors

NCSS: includes several procedures for ARIMA  fitting and forecasting.[13][14][15]

Python: the "statsmodels"  package includes models for time series analysis – univariate time series analysis: AR, ARIMA – vector autoregressive models, VAR and structural VAR –

descriptive statistics and process models for time series analysis.

R: the standard R stats package includes an arima function, which is documented in "ARIMA Modelling of Time Series" . Besides the  part, the function also

includes seasonal factors, an intercept term, and exogenous variables (xreg, called "external regressors"). The CRAN task view on Time Series  is the reference with many more

links. The "forecast"  package in R can automatically select an ARIMA model for a given time series with the auto.arima()  function and can also simulate seasonal and non-

seasonal ARIMA models with its simulate.Arima()  function.[16]

Ruby: the "statsample-timeseries"  gem is used for time series analysis, including ARIMA models and Kalman Filtering.

JavaScript: the "arima"  package includes models for time series analysis and forecasting (ARIMA, SARIMA, SARIMAX, AutoARIMA)

C: the "ctsa"  package includes ARIMA, SARIMA, SARIMAX, AutoARIMA and multiple methods for time series analysis.

SAFE TOOLBOXES : includes ARIMA modelling  and regression with ARIMA errors .

SAS: includes extensive ARIMA processing in its Econometric and Time Series Analysis system: SAS/ETS.

IBM SPSS: includes ARIMA modeling in its Statistics and Modeler statistical packages. The default Expert Modeler feature evaluates a range of seasonal and non-seasonal

autoregressive (p), integrated (d), and moving average (q) settings and seven exponential smoothing models. The Expert Modeler can also transform the target time-series data into its

square root or natural log. The user also has the option to restrict the Expert Modeler to ARIMA models, or to manually enter ARIMA nonseasonal and seasonal p, d, and q settings

without Expert Modeler. Automatic outlier detection is available for seven types of outliers, and the detected outliers will be accommodated in the time-series model if this feature is

selected.

SAP: the APO-FCS package[17] in SAP ERP from SAP allows creation and fitting of ARIMA models using the Box–Jenkins methodology.

SQL Server Analysis Services: from Microsoft includes ARIMA as a Data Mining algorithm.

Stata includes ARIMA modelling (using its arima command) as of Stata 9.

StatSim : includes ARIMA models in the Forecast  web app.

Teradata Vantage has the ARIMA function as part of its machine learning engine.

TOL (Time Oriented Language) is designed to model ARIMA models (including SARIMA, ARIMAX and DSARIMAX variants) [1] .

Scala: spark-timeseries  library contains ARIMA implementation for Scala, Java and Python. Implementation is designed to run on Apache Spark.

PostgreSQL/MadLib: Time Series Analysis/ARIMA .

X-12-ARIMA: from the US Bureau of the Census

See also [ edit ]
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Lecture notes on ARIMA models (Robert Nau, Duke University)

Stochastic processes

Discrete time
Bernoulli process · Branching process · Chinese restaurant process · Galton–Watson process · Independent and identically distributed random variables · Markov chain · Moran process ·

Random walk (Loop-erased · Self-avoiding · Biased · Maximal entropy)

Continuous time

Additive process · Bessel process · Birth–death process (pure birth) · Brownian motion (Bridge · Excursion · Fractional · Geometric · Meander) · Cauchy process · Contact process ·

Continuous-time random walk · Cox process · Diffusion process · Empirical process · Feller process · Fleming–Viot process · Gamma process · Geometric process · Hawkes process ·

Hunt process · Interacting particle systems · Itô diffusion · Itô process · Jump diffusion · Jump process · Lévy process · Local time · Markov additive process · McKean–Vlasov process ·

Ornstein–Uhlenbeck process · Poisson process (Compound · Non-homogeneous) · Schramm–Loewner evolution · Semimartingale · Sigma-martingale · Stable process · Superprocess ·

Telegraph process · Variance gamma process · Wiener process · Wiener sausage

Both
Branching process · Galves–Löcherbach model · Gaussian process · Hidden Markov model (HMM) · Markov process · Martingale (Differences · Local · Sub- · Super-) ·

Random dynamical system · Regenerative process · Renewal process · Stochastic chains with memory of variable length · White noise

Fields and other
Dirichlet process · Gaussian random field · Gibbs measure · Hopfield model · Ising model (Potts model · Boolean network) · Markov random field · Percolation · Pitman–Yor process ·

Point process (Cox · Poisson) · Random field · Random graph

Time series models
Autoregressive conditional heteroskedasticity (ARCH) model · Autoregressive integrated moving average (ARIMA) model · Autoregressive (AR) model ·

Autoregressive–moving-average (ARMA) model · Generalized autoregressive conditional heteroskedasticity (GARCH) model · Moving-average (MA) model

Financial models
Binomial options pricing model · Black–Derman–Toy · Black–Karasinski · Black–Scholes · Chen · Constant elasticity of variance (CEV) · Cox–Ingersoll–Ross (CIR) · Garman–Kohlhagen ·

Heath–Jarrow–Morton (HJM) · Heston · Ho–Lee · Hull–White · LIBOR market · Rendleman–Bartter · SABR volatility · Vašíček · Wilkie

Actuarial models Bühlmann · Cramér–Lundberg · Risk process · Sparre–Anderson

Queueing models Bulk · Fluid · Generalized queueing network · M/G/1 · M/M/1 · M/M/c

Properties
Càdlàg paths · Continuous · Continuous paths · Ergodic · Exchangeable · Feller-continuous · Gauss–Markov · Markov · Mixing · Piecewise deterministic · Predictable ·

Progressively measurable · Self-similar · Stationary · Time-reversible

Limit theorems

Central limit theorem · Donsker's theorem · Doob's martingale convergence theorems · Ergodic theorem · Fisher–Tippett–Gnedenko theorem · Large deviation principle ·

Law of large numbers (weak/strong) · Law of the iterated logarithm · Maximal ergodic theorem · Sanov's theorem · Zero–one laws (Blumenthal, Borel–Cantelli, Engelbert–Schmidt,

Hewitt–Savage, Kolmogorov, Lévy)

Inequalities Burkholder–Davis–Gundy · Doob's martingale · Doob's upcrossing · Kunita–Watanabe

Tools

Cameron–Martin formula · Convergence of random variables · Doléans-Dade exponential · Doob decomposition theorem · Doob–Meyer decomposition theorem ·

Doob's optional stopping theorem · Dynkin's formula · Feynman–Kac formula · Filtration · Girsanov theorem · Infinitesimal generator · Itô integral · Itô's lemma · Karhunen–Loève theorem ·

Kolmogorov continuity theorem · Kolmogorov extension theorem · Lévy–Prokhorov metric · Malliavin calculus · Martingale representation theorem · Optional stopping theorem ·

Prokhorov's theorem · Quadratic variation · Reflection principle · Skorokhod integral · Skorokhod's representation theorem · Skorokhod space · Snell envelope ·

Stochastic differential equation (Tanaka) · Stopping time · Stratonovich integral · Uniform integrability · Usual hypotheses · Wiener space (Classical · Abstract)

Disciplines
Actuarial mathematics · Control theory · Econometrics · Ergodic theory · Extreme value theory (EVT) · Large deviations theory · Mathematical finance · Mathematical statistics ·

Probability theory · Queueing theory · Renewal theory · Ruin theory · Signal processing · Statistics · System on Chip design · Stochastic analysis · Time series analysis · Machine learning
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