Reliability and accuracy of Cooper's test in male long distance runners

J.R. Alvero-Cruz a,∗, M.A. Giráldez García b, E.A. Carnero c, d

a Universidad de Málaga, Andalucía Tech, Facultad de Medicina, Málaga, Spain
b Facultad de Ciencias de la Actividad Física y el Deporte, Universidad de Cádiz, Spain
c Universidad de Málaga, Andalucía Tech, Laboratorio de Biodinámica y Composición Corporal, Facultad de Ciencias de la Educación, Málaga, Spain
d Translational Research Institute for Metabolism and Diabetes, Florida Hospital and Sanford, Burnham, Prebys Medical Discovery Institute, Orlando, FL, USA

ARTICLE INFO

Article history:
Received 8 March 2016
Accepted 14 March 2016
Available online 6 September 2016

Keywords:
Amateur athletes
Field endurance test
Bias correction factor
Technical error of measurement
Agreement analysis
Intraclass correlation coefficient
Effect size

ABSTRACT

Objective: Endurance capacity can be assessed by field test such as Cooper's test; however, reliability and accuracy are rarely reported in the literature. It was our aims to describe reliability and accuracy of Cooper's test in long distance runners.

Method: Fifteen male long distance runners performed twice all-out Cooper's test in a 400 m track. Total distance covered, maximum heart rate (HR) and rate of perceived exertion were recorded. Bias correction factor (Bc) was used to describe accuracy and the main dimensions of reliability were calculated by an intraclass correlation coefficient (ICC), effect size (ES) and agreement analysis.

Results: Accuracy for total distance and HR were relatively high (Cb = 0.994 and 0.956). Reliability for covered distance was as small as 1.7% (52.2 m) and ICC was 0.99; additionally, neither proportional nor systematical bias was detected in the agreement analysis.

Conclusions: All together, our results may confirm a good accuracy and reliability of Cooper's test in amateur long distance runners. Also, improvements or impairment lower than 52.2 m must not be associated with exercise training or detraining, since they are below the values of intra-subject reliability.

© 2016 Consejería de Turismo y Deporte de la Junta de Andalucía. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fiabilidad y precisión del test de Cooper en corredores varones de larga distancia

RESUMEN

Objetivo: La capacidad de resistencia puede ser evaluada por una prueba de campo como el test de Cooper, sin embargo, la precisión y fiabilidad son raramente divulgados en la literatura. Es nuestro objetivo describir la fiabilidad y la exactitud del test de Cooper en corredores de larga distancia.

Método: Quince varones fondistas realizaron pruebas de Cooper dos veces en una pista de 400 metros. La distancia recorrida, la frecuencia cardíaca máxima (FC) y la percepción de esfuerzo fueron registradas. El factor de corrección de sesgo fue utilizado para describir la exactitud y las dimensiones de la fiabilidad y se calcularon los coeficientes de correlación intraclase (CCI), el tamaño del efecto y un análisis de concordancia.

Resultados: La precisión de distancia total recorrida y de la frecuencia cardíaca fueron relativamente altas (Cb = 0.994 y 0.956). La confiabilidad para el recorrido era tan pequeña como el 1.7% (52.2 metros) y el CCI de 0.99, además no se detectó ni sesgo proporcional ni sistemático mediante el análisis de concordancia.

Conclusiones: Nuestros resultados pueden confirmar una buena exactitud y fiabilidad del test de Cooper en corredores de larga distancia aficionados. También, las variaciones inferiores a 52.2 metros no deben ser asociados con el ejercicio de entrenamiento o desentrenamiento, puesto que están por debajo de la fiabilidad intra-sujeto.

© 2016 Consejería de Turismo y Deporte de la Junta de Andalucía. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: alveroc@uma.es (J.R. Alvero-Cruz).

http://dx.doi.org/10.1016/j.ramd.2016.03.001
1888-7546/© 2016 Consejería de Turismo y Deporte de la Junta de Andalucía. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Palavras-chave:
Atletas amadores
Teste de campo resistência
Fator de correção de viés
Erro técnico de medição
Análise de concordância
Coeficiente de correlação intraclasse
Tamanho do efeito

Introdução

O teste de Cooper é um dos mais utilizados no mundo para estabelecer o grau de resistência. Entretanto, a precisão e a validade são temas raramente abordados na literatura. O objetivo do presente estudo foi descrever a fiabilidade e precisão do teste de Cooper em corredores de longa distância.

Método

Fifteen adult male amateur athletes (34.5 ± 1.9 years, and 3.7 ± 4.6 years of training) volunteered to participate in the study. All athletes were informed of the study characteristics, procedures and risks; afterwards a signed informed consent was obtained from those who decided to be enrolled. The Ethical Review Institutional Board (IRB) at the University of Malaga approved the research protocol.

Resultados

The accuracy of total distance in Cooper’s test, maximal HR and RPE were calculated by bias correction factor (Cb) from concordance correlation coefficient analysis. Absolute reliability was reported as the mean differences, coefficient of variation (CV),...
Table 1
Anthropometric and training variables of the sample.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>67.3 ± 10.7</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.0 ± 6.8</td>
</tr>
<tr>
<td>Age (years)</td>
<td>34.5 ± 1.9</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>22.9 ± 1.5</td>
</tr>
<tr>
<td>Training time (years)</td>
<td>3.7 ± 4.6</td>
</tr>
<tr>
<td>Km/week (km)</td>
<td>44.8 ± 9.8</td>
</tr>
</tbody>
</table>

...(continued)...

Results

Statistical analysis of the anthropometric and training characteristics of the sample are reported in Table 1. In this sample, inter-subject variability for total distance covered was 10.9–11.8% for the distances of 1st and 2nd test respectively, which reflected the dispersion of the results around the mean of the population. The accuracy of Cooper’s test was relatively high for distance (Cb = 0.994) and HR (Cb = 0.956) but low for RPE (Cb = 0.478).

No significant differences were found between test 1 and 2 either for total distance or HR. Additionally, our ICC results from test–retest data indicated that Cooper’s test had a very good reliability for covered distance and HR (Table 2). Regarding RPE, we observed a good ICC, although a significant difference was found between RPE in the first and second test (P < 0.001, Table 2).

Agreement analysis from the Bland–Altman plots did not showed systematic error for both, distance (difference = −20.5 m, P > 0.05) or maximal HR (difference = −1.1 bpm, P > 0.05), neither proportional bias as confirmed by Kendall’s tau rank correlation coefficient between differences and mean of measurements (Fig. 1).

Discussion

The aim of this study was to perform a preliminary reliability and accuracy of the Cooper’s test in amateur long-distance runners. Our data support a good reliability as suggested previously by other authors, who studied the reliability of Cooper’s test in non-athletic samples.5,6 In spite of small differences between the two trials, CV of Cooper’s test remained still around 52.2 m, although in relative units it was as low as 1.7%. This moderately high CV could be explained by the great heterogeneity of the athletic performance of the sample (range: 2350–3520 m trial 1 and 2275–3540 m trial 2), so the same absolute distance may represent similar percentages for high and low extremes in performance. In spite of the limitation, this may offer better generalization of our results since they included a larger range of performances and may highlight the bias of reliability data from a previous study where a more homogenous sample than ours was analyzed.5 Moreover, the ES of the differences was as low as 0.059 and the non-significant difference on covered distances between trials may indicate the good repeatability of this test.

Table 2
Relative and absolute reliability of Cooper’s test variables.

<table>
<thead>
<tr>
<th>Reliability</th>
<th>Distance 1 (m)</th>
<th>Distance 2 (m)</th>
<th>HR1 (bpm)</th>
<th>HR2 (bpm)</th>
<th>RPE1</th>
<th>RPE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>3026 ± 330</td>
<td>3047 ± 359</td>
<td>182 ± 7.3</td>
<td>183 ± 5.7</td>
<td>8.7 ± 0.6</td>
<td>9.5 ± 0.5</td>
</tr>
<tr>
<td>Mean diff (95% CI)</td>
<td>20.46 (−20.22 to 61.15)</td>
<td>0.93 (0.80–0.98)</td>
<td>1.13 (−0.68 to 2.93)</td>
<td>0.93 (0.80–0.98)</td>
<td>0.8 (0.48–1.11)</td>
<td>0.68 (0.05–0.89)</td>
</tr>
<tr>
<td>ICC (95% CI)</td>
<td>0.99 (0.96–0.99)</td>
<td>52.2 (1.7%)</td>
<td>2.4 (1.3%)</td>
<td>0.8387</td>
<td>0.173</td>
<td>1.045</td>
</tr>
<tr>
<td>CV (CV %)</td>
<td>52.2 (1.7%)</td>
<td>18.97</td>
<td>0.173</td>
<td>0.8387</td>
<td>0.1447</td>
<td>1.045</td>
</tr>
<tr>
<td>SEM</td>
<td>18.97</td>
<td>0.173</td>
<td>0.8387</td>
<td>0.1447</td>
<td>1.045</td>
<td>0.8387</td>
</tr>
<tr>
<td>Cohen’s d</td>
<td>0.059</td>
<td>0.173</td>
<td>0.8387</td>
<td>0.1447</td>
<td>1.045</td>
<td>0.8387</td>
</tr>
</tbody>
</table>

Data in the table are from two repeated all-out Cooper’s test. 1 and 2 subscripts indicate first and second Cooper’s test respectively. HR, maximal heart rate during the last minute of the test; SD, standard deviation; Mean diff, mean difference between first and second test; ICC, interval of confidence; CV, intraclass correlation coefficient; CV, coefficient of variation (CV (original units)) = √(∑(test1 − test2)^2)/n; % CV = cv/(mean × 100); SEM, standard error of the mean; RPE, rate of perceived exertion (scale from 0 to 10). 1 P < 0.001, for paired sample T-test.
Firstly, these results may be helpful for coaches and scientists when prescribing training load, reporting VO_{2}\text{max} changes or predicting performance in order to interpret the variability of their outcomes. On the other hand, researchers could use these data in order to calculate sample size. This study does not lack of limitations, and our results could be biased by the intensity of test, so it can be argued that the athletes did not exercise at maximum or same effort in both trials. By using HR, the intensity of aerobic exercise test may be easily confirmed. In this study, all participants reached theoretical maximal HR values as predicted from age, which may suggest that both trials were performed all-1 out. In relation with heart rate reliability, it was also observed a CV was also observed among 4 and 3.1%, a low effect size of the difference (0.17), as well as very low absolute reliability for the maximal HR (1.13 bpm); all together these results suggest that trials 1 and 2 were similar in intensity. Additionally, RPE is a recognized marker of intensity and homeostatic disturbance during exercise and it is usually monitored during exercise tests to complement other dimensions of intensity. Garcin analyzed the reliability of the HR and RPE in progressive and constant intensity exercises, concluding that these variables are reliable and replicable in these exercises. Nevertheless, our results did not confirm this latter evidence and RPE had a low reliability as confirmed by the very large ES found (1.4). A plausible reason for this disagreement may be related with the poor experience of athletes in using this variable.

In conclusion our results showed that the Cooper’s test is highly reliable when repeated after 48 h as confirmed by HR and distance data. This study provided support for the Cooper’s test as an accurate and reliable test to assess performance in a sample of amateur long-distance runners. Nonetheless, more studies are it must be necessary in order to validate performance-related constructs with Cooper’s test to confirm its utility as training tool in field settings.

Conflict of interest
The authors declare to have no conflict of interest.

Acknowledgements
We gratefully acknowledge the participants who dedicated their time to collaborate in this study, especially to coaches Juan Vázquez Sánchez and Daniel Pérez Martínez.

References