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Abstract 
Over the past few years, efforts have been made to determine the variants and genes that may be important to determine 
bone mineral density (BMD) that, at the same time, are involved in several bone diseases. To achieve this, the approach 
that has been the most successful of all has been genome-wide association studies (GWAS). In particular, in research on 
bone biology over 50 different large GWAS or GWAS metanalyses have been published identifying a total of 500 genetic 
loci associated with different bone parameters such as BMD, bone resistance, and risk of fracture. Although the discovery 
of associated variants is an essential aspect, the functional validation of such variants is equally important to elucidate 
their effect, as well as the causal correlation they have with genetic disease. Since it is a much more time consuming 
and tedious aspect it has become the new challenge of this post-GWAS era. Among the genes that have already been 
studied several Wnt signaling pathway genes have been included, among them, the SOST gene that plays a crucial role 
both determining the BMD of the population and monogenic diseases with elevated bone mass giving rise to a new 
therapy against osteoporosis. In this review we’ll be collecting the main GWAS associated with bone phenotypes, as 
well as some functional validations undertaken to analyze the associations found in them.
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GENOME-WIDE ASSOCIATION STUDIES 
(GWAS)

Over the past few years, genome-wide association stud-
ies (GWAS) have been an essential tool to identify what 
genes are involved in complex diseases (1). These studies 
consist of establishing an association between the ge-
netic or allelic frequency of millions of SNP (single nu-
cleotide polymorphisms) type markers distributed across 
the genome and a particular phenotype or disease (2). 
This approach is the most complete and impartial tool 
that exists for the particular of complex diseases. Unlike 
candidate gene association studies, GWAS are a hypoth-
esis-free approximation hypothesis that allows the dis-
covery of new genes or signaling pathways involved in 
a given phenotype that, up until now, were completely 
unknown (3). GWAS has been possible thanks to new 
advances made in high-throughput genome technolo-
gy, study design, improved statistical analysis, and the 
possibility of having large biobanks available (4,5). Due 
to the large number of simultaneous statistical tests per-
formed and, therefore, the statistical corrections made 
(that require a threshold p value of 5x10-8 to be consid-
ered statistically significant at whole genome level, and 
the small effect each variant presents in complex diseas-
es, extremely large cohorts are required. This has been 
achieved through metanalyses of the GWAS where dif-
ferent studies have come together to increase the size of 
the sample (6,7).

Although with the evident success reported, GWAS 
have 3 main limitations. First, the genetic variants used 
to validate the association with the particular phe-
notype are SNP markers (tagSNPs) that are homoge-
neously distributed across the whole genome with a 
minor allele frequency (MAF) ≥ 5 % in the population. 
Therefore, rare variants with possible strong effects in 
the phenotype are not included in these studies. An 
attempt has been made to solve this limitation by in-
cluding variants of less frequency in genotype chips, 
whole exome/genome sequencing, WES/WGS) and/or 
using the phenotypic extremes of the cohorts. Second, 
the success of GWAS largely depends on the size of 
the sample. Therefore, as commented above, the most 
widely used strategy today is to establish large consor-
tia including different cohorts from across the world. 
Therefore, super-cohorts of greater statistical power —
but genetically heterogeneous— are obtained in such a 
way that variants of a specific population are very dif-
ficult to find. Third, GWAS report the most statistically 
relevant SNP called lead SNP. Although this SNP can be 
the one causing this association, other variants that are 
in linkage disequilibrium with respect to the lead SNP 
variant can be responsible too. If the SNP associated 
is found in a codifying region and involves a change 
of amino acid, chances are that the SNP will be causal. 
However, truth is that most lead SNPs can be found in 
non-codifying regions (96 %) both intronic (41 %) and 
intergenic (54  %), which complicates the demonstra-
tion of their causal roles. Due to their non-coding na-

ture, conducting functional studies of these lead SNPs 
is truly challenging (8-10). Therefore, these functional 
studies are still scarce to this date, and establishing the 
functional basis of the associations found in such analy-
ses is still to be elucidated in this post-GWAS era.

To conduct functionality studies, interdisciplinary ap-
proaches are needed including in silico analyses (com-
putational approaches) (11,12) —like pathogenicity 
prediction tools—, in vitro studies including, among 
other, studies of the reporter gene assays (eg, lucifer-
ase) (13) and in vivo studies of animal models like the 
zebra fish or mice (14,15). 

This review summarizes the main GWAS published to 
this date using skeletal phenotypes, followed by in vi-
tro and in vivo studies generated from the first large 
GWAS metanalysis (16) ever conducted on bone min-
eral density (BMD) and risks of fracture.

GWAS AND BONES

To conduct GWAS of bone diseases such as osteoporosis, 
parameters like BMD, and the geometry and microar-
chitecture of the bone can be taken into consideration. 
Among these properties, the most widely used and the 
one that best predicts osteoporotic fracture is BMD 
that is a quantitative trait measured in a continuous 
scale using methods like dual-energy X-ray absorptiom-
etry  (DXA). It is estimated that BMD is a trait with an 
approximate heritability between 50 % and 80 %. Sim-
ilarly, the geometry of the bone shows heritability rates 
between 30 % and 70 % while bone microarchitecture 
determined by high-resolution peripheral quantitative 
computed tomography scan (HR-pQCT) shows heritabili-
ty rates between 20 % and 80 % (17).

Up until now, over 50 large GWAS have been conduct-
ed using bone parameters together with a plethora of 
GWAS in smaller and more homogenous cohorts. With 
this over 500 associated loci have been identified. Al-
though the percentage of variance explained through 
GWAS has increased substantially over the past few 
years thanks to the use of larger cohorts, all these 
loci only explain a small percentage (20 %) of genetic 
contribution to BMD (18,19). This has created a gap 
between the variability explained by genetic factors 
and BMD heritability probably due to overestimating 
heritability or the fact that other genetic factors like 
copy number variants (CNV) or epigenetics are not be-
ing taken into consideration (20). 

All in all, GWAS have yielded significant findings like 
the association between the SOST and LRP5 genes —
that had already been involved in monogenic skele-
tal disorders— and some skeletal phenotypes or the 
identification of new genes whose involvement in 
bone phenotypes was previously unknown (21). Table I  
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shows some of the most relevant GWAS associated 
with BMD, most of which have been reported in the 
GWAS catalog (http:\\ebi.ac.uk/gwas). To narrow it 
down, only studies with cohorts > 10 000 individuals 
have been considered.

Many of the GWAS displayed on table I correspond to 
studies in which large metanalyses have been conduct-
ed leaving as a result hundreds of variants in differ-
ent loci associated with skeletal phenotypes. However, 
most of these studies lack functional approaches.

FUNCTIONAL STUDIES IN THE POST-GWAS 
ERA

Despite the huge amount of association studies con-
ducted to this date, functional studies have not devel-
oped at the same pace. Therefore, only a small fraction 
(164; 15 %) of the 1051 manuscripts that have cited 
the first large GWAS metanalysis on bone density (16) 
included functional studies whether in vitro or in vivo.

An example of successful functional studies is the 
characterization of the regulation of the SOST gene. 
This gene codes the sclerostin protein, a canonical Wnt 
signaling pathway inhibitor (49-51) associated with 
multiple bone parameters in different association stud-
ies across several populations (17,28,33,38,40,43,52,53) 
(Fig. 1A). Its inhibitory function on bone formation 
has been widely studied in in vivo and in vitro models. 
Currently, antisclerostin antibodies are used to treat 
bone diseases like osteoporosis or osteogenesis im-
perfecta (54-59). Therefore, the regulatory factors of 
the expression of the SOST gene are included among 
the new candidates as a target for the development 
of new therapies. In humans, SOST gene variants have 
been associated with conditions characterized by an 
excessive bone formation: sclerosteosis, craniodi-
aphyseal dysplasia, and the phenotypic trait of high 
bone mass (60) (Fig. 1B). To these diseases we may 
add Van Buchem disease. It is due to the deletion of 
the enhancer element ECR5 of SOST situated at the  
52 kb region downstream of the gene that is necessary 
for the proper expression of the SOST gene (61) (Fig. 
1A). Actually, the transcription of the SOST gene is fine-
ly regulated by many different signals both through 
direct regulation on the promoter of the SOST gene 
and through the distal ECR5 regulatory region (62,63) 
whose physical interaction has been demonstrated in 
a study recently conducted by our group on bone cells 
(64) (Fig. 1A). The MEF2C transcription factor is the 
best described SOST regulator in relation to its expres-
sion in osteocytes (63,65). The importance of MEF2C 
in the enhancer effect of ECR5 has been confirmed in 
the knock-out mouse model of Mef2c in osteoblasts/
osteocytes that has a high bone mass and low levels of 
sclerostin (66). Precisely, MEF2C is yet another of the 

most repeated signals in GWAS with bone parameters 
(16,23,36,37,67-70). Together with MEF2C, HDAC5 has 
also been described as a negative regulator of the ex-
pression of the SOST gene that exerts its function by 
blocking the association of MEF2C and ECR5 during the 
differentiation of immature osteocytes (Fig. 1C). Con-
sistent with this, the HDAC4/5 knock-out mouse mod-
el displays low BMD, and high expression of the SOST 
gene (71-73). Once again, HDAC4/5 is found among 
the most repeated loci in association studies with bone 
parameters (18,23,34,39,74) (Fig. 1B).

Another example of how important it is to conduct 
functional studies of associated regions is the DKK1 lo-
cus. This is another canonical Wnt signaling pathway 
inhibitor that plays a crucial role in the morphogenesis 
of the head (75,76), and bone development (77,78). 
Currently, no DKK1 variant has been described caus-
ing bone diseases in the HGMD database. Despite of 
this, our group identified 2 different missense variants 
in patients with the high BMD phenotype who show 
a functional loss of their inhibitory ability (13,79). On 
the other hand, one of these variants has also been 
found in patients with totally opposed phenotypes 
like osteoporosis or anal malformations (80,81). Also, 
we should mention that no GWAS has ever found SNPs 
in DKK1 associated with BMD or other bone param-
eters. However, an association with BMD has been 
demonstrated in a set of SNPs grouped in a region  
350 kb downstream of DKK1 and 92 kb upstream of 
MBL2 (16,18,19,29,33,34,36,37,39,74) (Fig. 2). To distin-
guish which one of these 2 genes was responsible for 
this association, a study from our group (13) conduct-
ed a 4C chromatin conformation capture using the 
GWAS signal-rich region as a bait in 3 bone cellular 
types. This confirmed the physical interaction between 
this region and the DKK1 promoter ruling out any in-
teraction with the MBL2 gene (Fig. 2; lower panel).  
It is precisely in this region where the LNCAROD gene 
is found, which specifies a DKK1 activator long non-
coding (lncRNA), a possible culprit of the association 
found in the GWAS (82).

One of the most consistent loci across different GWAS 
on BMD is the genomic region situated in 7q31.31 in-
cluding the WNT16 gene. This is a very complex loci, 
also including, apart from the WNT1 gene, the neigh-
boring genes ING3, FAM3C, and CPED1. The role of the 
WNT16 gene determining BMD has been clearly estab-
lished in functional studies of knock-out mouse mod-
els or osteoblast-specific conditional knock-out mice 
(6,83,84) that, largely, show spontaneous fractures 
due to low BMD plus reduced cortical thickness and 
bone resistance. However, evidence has been found 
on the importance of 3 other neighboring genes in 
bone metabolism. In the case of the protein coding 
gene ING3 (Inhibitor of Growth Family Member 3)  
—part of the Nucleosome Acetyltransferase of H4 his-
tone acetylation (NuA4 HAT) complex involved in chro-
matin regulation— it has been found abundantly ex-
pressed in bone tissue (85). 
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Figure 1. The SOST gene. A. Upper panel: Locus containing the SOST gene and its neighboring genes (GRC37/hg19). In purple, the 
ECR5 regulatory region. Main panel: SNPs associated with different bone parameters across different GWAS from the GWAS catalogue 
(https://www.ebi.ac.uk/gwas7). Lower panel: Main results of the 4C clinical trial conducted by Martínez-Gil et al. back in 2021 showing the 
main interactions of the SOST promoter (used as a bait and indicated with a dot and gray discontinuous). Colored squares show the interac-
tions with color intensity proportional to the intensity of the interaction. Red, blue, and green squares show interactions with mesenchymal 
stem cells, hFOB cells, and SAOS2 cells, respectively. The units of the genomic scale used (1e7pb) correspond to 10 mega bases (1x107 base 
pairs). B. Schematic representation showing of sclerostin protein showing its functional domains and variants responsible for human skeletal 
conditions. Purple, red, and blue colors show the variants associated with craniodiaphyseal dysplasia, sclerosteosis, and the HBM phenotype 
variant. CTCK, C/terminal cysteine knot-like. C. Scheme of some of the positive and negative regulators of the expression of the SOST gene.
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Figure 2. DKK1. Upper panel: locus containing the DKK1 gene and its neighboring genes (GRC37/hg19). In green, the lncRNA LNCAR-
OD of GENCODE v32.2 (GRC38/hg18). Main panel: SNPs associated with different bone parameters across different GWAS taken from 
the GWAS catalogue (https://www.ebi.ac.uk/gwas7). Lower panel: Main results from the 4C clinical trial conducted by Martínez-Gil et al. 
in 2020 showing the main interactions with the SNP-rich region associated with BMD (used as a bait and indicated with a dot and gray 
discontinuous line). Colored squares show interactions with color intensity proportional to the intensity of the interaction. Red, blue, and 
green squares show interactions with mesenchymal stem cells, hFOB cells, and SAOS2 cells, respectively. The units of the genome scale used 
(1e7pb) correspond to10 mega bases (1x107 base pairs).

In addition, functional studies of an in vitro cellular 
model of mesenchymal cells knocked-out for ING3 
show osteoblastogenesis damage and stimulation 
of adipogenic differentiation (86). Regarding the 
CPED1 gene (Cadherin Like And PC-Esterase Domain 
Containing 1), no specific function of this gene has 
been found in humans or mice. However, in mice, 
functional studies show that the Cped1 gene is uni-
formly expressed in a variety of tissues including 
bone. Also, different isoforms have been described 
due to alternative splicing, as well as 3 promoter re-

gions active during osteogenic differentiation (87).  
To better define its possible role in bone homeosta-
sis, additional functional studies would be needed 
in in vitro cellular or animal models. FAM3C (family 
of sequence similarity 3c) is a cytokine-like growth 
factor expressed in multiple tissues (88) that plays 
a very important role in epithelial-mesenchymal 
transition, and cancer metastasis (89). Its association 
with bone metabolism has been confirmed with the 
knock-out mouse model that shows bone structure 
alterations (88). 

SNP of BMD

Contacts of chromatin 
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Several functional studies have been conducted on 
the expression regulation of different genes at that 
region. For example, our group has conducted eQTL 
studies (expression Quantitative Trait Locus) with pri-
mary osteoblasts that show that SNPs located inside 
the WNT16 gene regulate the levels of expression of 
FAM3C of those cells (90). Also, in cells of osteoblas-
tic lineage we have seen a physical interaction among 
different gene enhancers located inside the CPED1 
gene, and the promoter of the WNT16 gene (91). All 
this shows the existence of a complex relation among 
these 4 genes, and suggests the possibility that they 
are working together. All in all, additional function-
al studies should be conducted to elucidate the role 
played by each of these genes, as well as all their pos-
sible interactions.

The aforementioned studies reveal the importance of 
functional studies based on the findings brought by 
analyzing GWAS. Challenge, now, is in the post-GWAS 
era. If we keep finding correlations between different 
variants in GWAS and functional aspects of these vari-
ants —in silico, in vitro or in vivo— we may end up 
finding new approaches and, therefore, new insights 
and therapeutic options for associated conditions and 
disorders.
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