SciELO - Scientific Electronic Library Online

 
vol.37 issue2Extemporaneous clobazam suspensions for paediatric use prepared from commercially available tablets and pure drugElectrolytes content in parenteral drugs authorised in Spain author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Farmacia Hospitalaria

On-line version ISSN 2171-8695Print version ISSN 1130-6343

Abstract

VALENZUELA JIMENEZ, B. et al. Influence of genetic polymorphisms in UGT1A1, UGT1A7 and UGT1A9 on the pharmacokynetics of irinotecan, SN-38 and SN-38G. Farm Hosp. [online]. 2013, vol.37, n.2, pp.111-127. ISSN 2171-8695.  https://dx.doi.org/10.7399/FH.2013.37.2.386.

Objective: To evaluate the Influence of genetic polymorphism in UGT1A1, UGT1A7 and UGT1A9 on the population pharmacokinetics of irinotecan and its metabolites, SN-38 and SN-38G. Methods: Plasma concentrations of irinotecan, SN-38 and SN-38G from 72 patients were pooled to develop a population pharmacokinetic model using NONMEM VII. M3 method was used to account for plasma concentrations below the limit quantification. The effect of age, sex, body surface area, total bilirubin, comedication, tumor type, and UGT1A1, UGT1A7 and UGT1A9 genotypes on the model parameters was evaluated. The model was internally validated using normalized visual predictive check (NVPC) and normalized predictive distribution errors (NPDE). Results: The typical values (between-subject variability; %) of the irinotecan, SN-38 and SN-38G clearances were 42,9 L/h (56,4%), 1340 L/h (76,8%) and 188 L/h (70,1%), respectively. The presence of UGT1A1*28, UGT1A7*3, UGT1A9*22 genotypes decreases SN-38 clearance between 20 and 36%. Internal validation confirms the population pharmacokinetic model describe the time course of irinotecan, SN-38 and SN-38G plasma concentration and their associated variability in cancer patients. Conclusion: The inclusion of pharmacokinetic-pharmacogenomic information can add value to the individualized dose adjustment of irinotecan, because it will let quantitatively handle dose reductions in patients with iatrogenic toxicity due to UGTIAVs genetic polymorphisms.

Keywords : Irinotecan; Pharmacokinetics; Genotype; Isoform; Polymorphism; NONMEM; Oncology.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License