My SciELO
Services on Demand
Journal
Article
Indicators
- Cited by SciELO
- Access statistics
Related links
- Cited by Google
- Similars in SciELO
- Similars in Google
Share
Revista de Osteoporosis y Metabolismo Mineral
On-line version ISSN 2173-2345Print version ISSN 1889-836X
Abstract
TAYMOURI, F et al. Bone tissue mechanical strength is independent of age in healthy individuals. Rev Osteoporos Metab Miner [online]. 2018, vol.10, n.4, pp.125-130. Epub Apr 03, 2023. ISSN 2173-2345. https://dx.doi.org/10.4321/s1889-836x2018000400004.
Objective:
Impact microindentation (IMI) is a technique that allows the measurement of mechanicalbone tissue resistance in vivo. IMI has proven to provide useful information on the evaluation of skeletal diseases, but the effect of age on the bone property that is measured by this technique is unknown. This study aims to analyzethe relationship between age and MIH.
Materials and methods:
Bone Material Strength index (BMSi), IMI’s output variable, was measured in 69 healthy women (median age: 49 years, range: 30-81 years) and 19 healthy men (median age: 34 years, range: 24-98 years). The correlation between BMSi and age was analyzed by linear regression. The association between BMSi and age was evaluated by ANOVA after adjusting for body mass index. The potential effect of postmenopausal estrogenic depletion on BMSi was studied by comparing the younger vs the older subset of women through a t-student test.
Results:
Linear regression analysis showed that BMSi was not correlated with age in either men (R2=0.0016, p=0.74) or women (R2=0.076, p=0.25). Similarly, the BMI-adjusted ANOVA model revealed a lack of association of BMSi with age in men (p=0.78) and women (p=0.73). Finally, there were not significant differences on BMSi detected between the younger and the older subset of women (p=0.8).
Conclusions:
Bone tissue mechanical resistance in healthy individuals is independent of age and postmenopausal estrogenic depletion.
Keywords : impact microindentation; Bone Material Strength index (BMSi).