SciELO - Scientific Electronic Library Online

 
vol.22 número5Validación de la versión corta del Woman Abuse Screening Tool para su uso en atención primaria en EspañaSatisfacción laboral de los profesionales de enfermería españoles que trabajan en hospitales ingleses índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Gaceta Sanitaria

versão impressa ISSN 0213-9111

Gac Sanit vol.22 no.5 Barcelona Set./Out. 2008

 

ORIGINAL

 

Análisis de terminologías de salud para su utilización como ontologías computacionales en los sistemas de información clínicos

Analysis of health terminologies for use as ontologies in healthcare information systems

 

 

Maria Teresa Romá-Ferria, Manuel Palomarb

aDepartamento de Enfermería, Universidad de Alicante, Alicante, España
bDepartamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante, Alicante, España.

Dirección para correspondencia

 

 


RESUMEN

Objetivos: Las ontologías son un recurso que permite trabajar informáticamente con la conceptualización del significado y evitar la limitación impuesta por los términos normalizados. El objetivo de este estudio es establecer el grado de usabilidad de las terminologías para el diseño de ontologías, que contribuyan a resolver los problemas de interoperabilidad semántica, y de reutilización de conocimiento en los sistemas de información clínicos.
Métodos: Se han analizado 6 de las terminologías más relevantes para el ámbito clínico, epidemiológico, documental y administrativo-económico. Se valoraron las siguientes cualidades: cobertura conceptual, estructura jerárquica, granularidad conceptual, relaciones conceptuales y grado de formalismo utilizado en la representación conceptual, para establecer el grado de usabilidad.
Resultados: Se consideran como ontologías ligeras los MeSH, los DeCS y el UMLS, aunque con diferencias entre ellas, al explicitar los conceptos, el tipo de relación y las restricciones entre los conceptos asociados. SNOMED y GALEN, con su formalismo declarativo basado en descripciones lógicas, incluyen la explicitación de las cualidades, una mayor restricción para relacionar conceptos y las reglas de combinación entre ellos, por lo que se consideran como ontologías pesadas.
Conclusiones: El análisis de la representación declarada de las terminologías muestra las posibilidades de su reutilización como ontologías. Su grado de usabilidad dependerá de si se pretende que los sistemas de información clínicos resuelvan los problemas de interoperabilidad semántica (ontologías ligeras) o además reutilizar su conocimiento para sistemas de ayuda a la toma de decisiones (ontologías pesadas) y para tareas de recuperación, extracción y clasificación de información no estructurada.

Palabras clave: Terminologías. Semántica. Aplicaciones de informática médica. Sistemas de gestión de información avanzada integrada.


ABSTRACT

Objectives: Ontologies are a resource that allow the concept of meaning to be represented informatically, thus avoiding the limitations imposed by standardized terms. The objective of this study was to establish the extent to which terminologies could be used for the design of ontologies, which could be serve as an aid to resolve problems such as semantic interoperability and knowledge reusability in healthcare information systems.
Methods: To determine the extent to which terminologies could be used as ontologies, six of the most important terminologies in clinical, epidemiologic, documentation and administrative-economic contexts were analyzed. The following characteristics were verified: conceptual coverage, hierarchical structure, conceptual granularity of the categories, conceptual relations, and the language used for conceptual representation.
Results: MeSH, DeCS and UMLS ontologies were considered lightweight. The main differences among these ontologies concern conceptual specification, the types of relation and the restrictions among the associated concepts. SNOMED and GALEN ontologies have declaratory formalism, based on logical descriptions. These ontologies include explicit qualities and show greater restrictions among associated concepts and rule combinations and were consequently considered as heavyweight.
Conclusions: Analysis of the declared representation of the terminologies shows the extent to which they could be reused as ontologies. Their degree of usability depends on whether the aim is for healthcare information systems to solve problems of semantic interoperability (lightweight ontologies) or to reuse the systems' knowledge as an aid to decision making (heavyweight ontologies) and for non-structured information retrieval, extraction, and classification.

Key words: Terminology. Semantics. Medical informatics applications. Integrated advanced information management systems.


 

Introducción

El avance progresivo e imparable de las tecnologías de la información y de la comunicación está originando cambios con respecto a la gestión de la información1-4. De hecho, el reto actual se sitúa en convertir la abundante información existente en un conocimiento que pueda ser operativo y funcional en el contexto de su aplicación: los cuidados de los pacientes, la evaluación de la calidad asistencial, la investigación y la epidemiología, la planificación y la gestión o la formación, considerando, al mismo tiempo, los factores de riesgo presentes de sobreabundancia, redundancia, infrautilización o inadecuada utilización de la información existente4-8.

La historia clínica es uno de los elementos esenciales del sistema de información asistencial enfocado en el paciente. En el ámbito nacional, la transformación electrónica de la historia (HCE) se está llevando a cabo por la integración de varios subsistemas parciales de información (laboratorio, radiología, anatomía patológica, farmacia...). Es decir, cada subsistema ha pasado de ser un sistema aislado (PC sin conectar a la red) a formar parte de un sistema distribuido y donde la información está repartida en varios ordenadores interconectados (su nueva arquitectura). No obstante, todavía cada subsistema se mantiene como una unidad discreta con su modelo de datos, su lógica, su base de datos y su propia terminología9.

Las terminologías en el dominio de la salud han sido el recurso utilizado para la representación de conocimiento, el intercambio de información y la recuperación de documentos profesionales. Las terminologías, indistintamente del criterio de agrupación que se adopte (clasificación, nomenclatura o taxonomía), tienden a modelizar un sistema bajo la forma de un conjunto de términos con una intención fundamentalmente normativa10. En el actual contexto de la digitalización, las terminologías siguen actuando en los sistemas de información (SI) como una forma de entrada/salida de datos estandarizados, como por ejemplo con las etiquetas para los diagnósticos médicos que se seleccionan desde jerarquías preestablecidas (menús), utilizadas para igualar las opciones de los usuarios11 y para almacenar la cadena de caracteres que corresponden a dicha etiqueta. Los SI sólo aceptan una forma específica de pedir una información y limitan la expresividad natural de cada individuo en su idioma.

Además, los datos que constituyen el SI pueden proceder tanto del ámbito interno como del externo a la organización5. En un hospital, los datos complementarios se encuentran en diversos recursos de información externos (bases de datos bibliográficas, guías clínicas, estadísticas, de otros centros asistenciales...). Por otra parte, hay que considerar los desplazamientos de los ciudadanos con sistemas de atención diferenciados (estados miembros de la Unión Europea) y distintos modelos de historia de salud (comunidades autónomas) e idioma.

Para poder utilizar estos datos, ha sido preciso desarrollar protocolos que permitieran la transferencia y la sincronización de los datos entre las diferentes aplicaciones de un sistema o entre los distintos subsistemas (interoperabilidad del sistema). A pesar de ello, persisten problemas para compartirlos, porque los SI, emisor y receptor, necesitan entender de forma común el dato transferido. Ambos SI deberían tener la capacidad de interpretar los datos de forma automática y, consecuentemente, reutilizarlos en aplicaciones o subsistemas que no intervinieron en su creación (a dicha capacidad se la denomina interoperabilidad semántica)7,8,12,13. No obstante, el problema principal es que pueden estar utilizando el mismo término para referirse a conceptos distintos (proteinuria como un trastorno renal o como el resultado de una prueba de laboratorio), o diferentes términos para el mismo concepto (mucoviscidosis, fibrosis quística, disfunción de la proteína RTFQ, mutación de la región 7q31 del cromosoma 7)14. Esta ambigüedad en los significados tiene consecuencias para los usuarios de los SI. La información localizada puede ser inadecuada tanto por las pérdidas o la redundancia que ocasiona al consultar las bases de datos documentales como por la inexactitud de las traducciones de los términos en los diferentes idiomas10. En otras palabras, se precisan SI que compartan el significado de los términos y no exclusivamente la normalización de la entrada/salida de los datos. Una estrategia adoptada para superar estas limitaciones es utilizar ontologías computacionales.

Una ontología es un recurso constituido por un conjunto de conceptos organizados por sus relaciones15. Los conceptos y las relaciones incluidas deben describir el conocimiento consensuado y aceptado de un área o dominio de interés para ser utilizado tanto por los humanos como por las máquinas15,16. Este recurso permite que los SI trabajen automáticamente a partir del significado de los signos lingüísticos (términos) y sus combinaciones. En la figura 1 se incluye una posible descripción del concepto «corazón», en una ontología compartida por un SI.

Figura 1. Descripción parcial del concepto «corazón», en una ontología
compartida por un sistema de información.

 

En la actualidad, las ontologías se están aplicando en áreas heterogéneas17. Aunque quizá se las conoce más por su papel en el desarrollo de nuevos servicios en la web basados en la descripción del significado de los contenidos de las sedes o portales de internet (web semántica)18, también se están utilizando para el desarrollo de mecanismos que faciliten la comunicación entre las personas y las máquinas por medio del lenguaje natural (procesamiento del lenguaje natural [PLN]). En el contexto sanitario se están utilizando cada vez más para diversas tareas, como la de recuperación de información, la de búsqueda de respuesta en fragmentos de texto que resuelven preguntas y la de extracción de información desde textos narrativos y no desde los campos estructurados de las bases de datos, o bien para la clasificación de documentos de forma automática13,19,20.

En este trabajo se realiza un análisis cualitativo de las terminologías, más referidas en el ámbito de la salud, para determinar su grado de usabilidad a partir de sus características intrínsecas, y establecer los obstáculos que cada una de ellas presenta para la interoperabilidad semántica y la reutilización de su conocimiento como ontologías en los SI clínicos.

 

Métodos

Para el análisis se seleccionó la Clasificación Internacional de Enfermedades en su novena revisión, Modificación Clínica (CIE-9-MC)21, los Medical Subject Headings (MeSH)22, los Descriptores en Ciencias de la Salud (DeCs)23, la Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT)24, la General Architecture for Languages Encyclopaedias and Nomenclatures in Medicine (GALEN)25 y el Unified Medical Language System (UMLS)26. Los criterios de inclusión de las terminologías fueron su relevancia tanto para el ámbito clínico, epidemiológico y documental como para el administrativo-económico, y que estuvieran expresadas en español o en alguno de los idiomas de la Unión Europea.

La usabilidad en este trabajo se entendió como la facilidad que presentaba el diseño de las terminologías para poder utilizarse como ontologías computacionales. Se comenzó por equiparar arbitrariamente las etiquetas terminológicas (rúbricas, descriptores, términos) a un concepto. Por medio de este procedimiento se constituyó el conjunto de conceptos que el vocabulario de cada terminología captura27,28. No se diferenció entre conceptos simples (corazón = órgano) o complejos (cardiopatía = enfermedad + músculo + corazón). Las métricas analizadas fueron las siguientes:

1. Cobertura conceptual: finalidad, utilidad y amplitud del conjunto de conceptos representados.

2. Estructura jerárquica. La organización conceptual para representar el conocimiento del dominio puede ser:

- Monoaxial, o una jerarquía compuesta por una lista finita de categorías y subcategorías, elaborada siguiendo un orden lógico determinado por un criterio (una cualidad o un atributo) que aproxima los conceptos más específicos (hijos) y los agrupa dentro de los más generales (padre).

- Multiaxial. El domino se estructura a través de varias jerarquías. Cada jerarquía o eje se desarrolla a partir de un atributo concreto que le da la naturaleza al eje. Este sistema organizativo permite que un mismo concepto hijo esté asociado a varios padres.

- Composicional. Se caracteriza por permitir la creación de conceptos complejos a partir de la combinación de los conceptos «primitivos» (elementales): clínicos y modificadores (agudo, izquierda, proximal...); no es necesario explicitar por adelantado todos los conceptos precisos de una especialidad o área de atención. Además, para prevenir la creación de conceptos complejos sin significación, se incluyen las reglas y restricciones de combinación de los conceptos.

- Léxico-conceptual. Organiza el léxico (vocabulario) a partir de su significado (tipos semánticos). Los conceptos incluidos y sus relaciones semánticas determinan el modelo de interpretación del dominio.

3. Granularidad conceptual de las categorías o clases representadas. Referida a la profundidad del detalle o especificidad de los conceptos representados.

4. Relaciones conceptuales. El tipo de enlaces existentes, bien por la dependencia jerárquica (implícita o explícita del enlace «es un») o por los enlaces semánticos detallados («es causado», «se localiza»...), que determinan o restringen las cualidades heredadas por los conceptos inferiores de los superiores.

5. Grado de formalización. Referido al lenguaje utilizado para la representación, entendiendo que éste debe ser inteligible y computable por el ordenador. Las posibilidades para su menor o mayor reutilización informática son: a) informal, o expresadas en cualquier lenguaje natural; b) semiinformal, o expresadas en lenguaje natural de forma estructurada y restrictiva; c) semiformal, expresadas en lenguaje artificial formalmente definido, y d) formal, al estar declaradas exclusivamente con lenguajes lógico-matemáticos por la definición meticulosa de una semántica formal, teoremas y pruebas de validez que suprimen la ambigüedad y aseguran la consistencia de la representación29.

 

Resultados

Los datos sobre las características cualitativas de cada una de las terminologías analizadas desde una perspectiva ontológica se muestran en la tabla 1. En todas las terminologías hay coincidencia con algunos conceptos, independientemente de la amplitud de la cobertura, lo cual sólo manifiesta la superposición existente en primera instancia. Ahora bien, la interpretación del concepto depende del nivel de granularidad que se le otorga, el cual, a su vez, depende de su localización en la estructura jerárquica a la que pertenece: nivel superior (generalización), intermedio o inferior (especificidad). Así, por ejemplo, en la CIE-9-MC la «tetralogía de Fallot» y el «defecto del tabique ventricular» son conceptos hermanos (igual nivel de especificación); en SNOMED, «ventricular septal defect» está como concepto padre y «tetralogía de Fallot» como concepto hijo. En cambio, en GALEN la «tetralogía de Fallot» se identifica como una instancia (casos concretos) del concepto «congenital ventricular septal defect», mientras que en MeSH y DeCS la «tetralogía de Fallot» se considera un hermano de «defectos del septum» (tabla 2), lo cual muestra la heterogeneidad en la representación del conocimiento aceptado.

 

Discusión

De acuerdo con la literatura médica29-31, todas las terminologías aquí analizadas pueden considerarse inicialmente como prototipos para diseñar ontologías ligeras, ya que facilitan una conceptualización aceptada del dominio y una organización jerárquica de los conceptos. La CIE-9-MC responde a los criterios de este tipo de ontologías. Sin embargo, esta terminología sólo incluye los conceptos en una estructura taxonómica, donde el enlace «es un» está implícito. De hecho, algunos de los conceptos hijos son «un tipo» o especificación de los conceptos padres, y en cambio, en otros están asociados por ser «una parte» del concepto superior. En otras palabras, los conceptos se encuentran definidos por dos tipos distintos de relaciones no explicitadas, lo que acarrea ambigüedad para la interpretación de su significado. En la actualidad los conceptos representados en la CIE-9-MC sólo pueden ser procesados informáticamente comparando los signos lingüísticos con un patrón preestablecido sin significación semántica (normalización terminológica). Dicho inconveniente sería superable si se contara con una formalización computacional para su explicitación.

Un modelo de conocimiento con algunas restricciones interpretativas es el que se construye con los tesauros31. Tanto los MeSH como los DeCS proporcionan una limitación a la interpretación semántica debido a los tipos de relaciones que incluyen en la estructura organizativa de los conceptos (de equivalencia, de jerarquía y de asociación). Sin embargo, la jerarquización de los conceptos a partir de la explicitación de sus relaciones no es suficiente para reducir la ambigüedad de la interpretación. También se precisa establecer las propiedades de los conceptos para delimitarlos. El lenguaje semiinformal que se utiliza para formalizar la estructura de los MeSH y de los DeCS no especifica las propiedades de cada concepto; sólo se incluyen aclaraciones textuales para los catalogadores. Esta debilidad hace imposible resolver aspectos relacionados con la ambigüedad cuando los conceptos no son verdaderos conceptos hijos o no son necesariamente hermanos (tetratología de Fallot y defectos del septum). Ambos recursos sólo pueden ser considerados como ontologías ligeras por su descripción limitada de los conceptos y sus relaciones, lo cual es su inconveniente para la reutilización de su conocimiento31.

SNOMED y GALEN han incluido la definición de las propiedades de los conceptos, añadiendo restricciones explícitas y verificando la consistencia de su taxonomía al incluir verdaderos subconceptos y conceptos hermanos. Las restricciones entre los conceptos relacionados incrementan el control de la ambigüedad; con ellas se limita la transmisión de las propiedades de los conceptos padres a los conceptos hijos, y sólo heredan las propiedades adecuadas29-31. Ahora bien, hay diferencias entre ellas: GALEN es un recurso abierto y SNOMED es un recurso propietario. El acceso limitado a SNOMED sesga el análisis realizado y es un aspecto que hay que valorar por el coste económico que conllevaría su reutilización. No obstante, ambas han sido expresadas con descripciones lógicas que las dotan de mayor expresividad para la representación del dominio; aunque, con la información localizada, sólo GALEN diferencia entre concepto específico e instancia (tabla 2), si bien ambas pueden considerarse como ontologías pesadas31, al poder utilizarse también para los procesos de razonamiento (inferencia y descubrimiento de nuevo conocimiento) definidos en la base de conocimiento15.

La situación de UMLS es intermedia, y su formalismo de representación es semiformal. Este recurso sólo lo podemos entender como una ontología ligera con la representación más amplia del dominio. No obstante, desde el punto de vista de las restricciones semánticas, hay diferencias sustanciales con MeSH y DeCS. El UMLS tiene una taxonomía de relaciones semánticas compuesta por 54 tipos diferentes, que amplían o restringen la descripción de los conceptos. En él no se añaden axiomas para la deducción, pero se puede realizar la inferencia por el seguimiento de las asociaciones semánticas preestablecidas dentro de la Red Semántica, y complementadas por las existentes en el Metathesaurus. Esta limitación le da la versatilidad para adaptarlo a diferentes SI o tareas concretas para el PLN. Por ejemplo, la «tetralogía de Fallot» en UMLS es «una enfermedad/síndrome resultado de una anomalía congénita, la cual es un tipo de anomalía anatómica...» («tetralogy of Fallot» is a «congenital abnormality» is a «anatomical abnormality», «disease or syndrome» result of «congenital abnormality»...), y dicho concepto puede representarse textualmente por medio de diversas etiquetas o sinónimos, como la abreviatura TOF (tabla 2).

El análisis realizado pone de manifiesto las posibilidades y las limitaciones que deben considerarse para lograr que los SI, emisor y receptor, entiendan de forma común el dato transferido (términos clínicos) a partir de la reutilización del conocimiento representado en las terminologías. Tanto los MeSH y los DeCS como el UMLS tienen una formalización reducida que permite controlar parcialmente la ambigüedad de los conceptos y, aunque hay diferencias significativas entre ellas, puede reutilizarse para el desarrollo de ontologías ligeras. Una ontología ligera permite la integración y la interoperabilidad semántica de fuentes de información heterogéneas al trabajar con conceptos que pueden asociarse a diversas etiquetas terminológicas y responder a diferentes intereses simultáneamente: clínicos, investigación, epidemiológicos, económicos y formativos. Las nomenclaturas SNOMED y GALEN cuentan con una mayor expresividad para especificar los conceptos, las propiedades, las restricciones y el tipo de relaciones incluidas. En ambos casos podrían reutilizarse para el diseño de ontologías pesadas, debido a que su formalismo declarativo basado en descripciones lógicas les posibilita el descubrimiento por inferencia de nueva información. Las ontologías pesadas son idóneas para su inclusión en los SI que ayudan a la toma de decisiones diagnósticas o de tratamientos32,33, y como recurso para el PLN. La CIE-9-MC es la única de las terminologías analizadas cuya reutilización como ontología conllevaría el mismo esfuerzo e inversión que si se creara una ontología nueva.

Las limitaciones del trabajo presentado son las restricciones propias de los estudios exploratorios; asimismo, el análisis se ha centrado específicamente en el conocimiento declarado y no en la exactitud teórica de la representación que proporciona cada una de las terminologías estudiadas.

Como conclusión, el análisis realizado aconseja replantear la metodología aplicada en España. El mantenimiento de las terminologías de subsistemas integrados plantea inconvenientes para la utilización adecuada del SI clínico. Por una parte, el uso de terminologías diferentes da lugar a pérdidas de datos significativos para el sistema y, por otra, los profesionales precisan un entrenamiento previo11. Además, cuando el profesional consulta información para apoyar sus decisiones, se encuentra con sistemas de clasificación heterogéneos o con la necesidad de aplicar términos diferentes al interrogar a cada sistema de recuperación de información; por ejemplo, en el caso de precisar localizar historias clínicas de casos similares, datos de mortalidad en el Instituto Nacional de Estadística y evidencias en MEDLINE e IME. Trabajar con una ontología compartida por todos los subsistemas que conforman el SI clínico ha mostrado ventajas prácticas para los usuarios34.

Además, las expectativas para el desarrollo de ontologías se incrementan si consideramos la gran cantidad de información textual que se introduce en la HCE y que no es procesable en la actualidad, salvo por la codificación manual en CIE-9-MC. Asimismo, contar con una ontología compartida en el SI clínico facilitaría la realización de diversas tareas automáticas: la clasificación de documentos, la recuperación de información o la extracción de datos clínicos presentes en las notas de evolución o en los informes al alta (p. ej., para hacerlos anónimos y utilizarlos en ámbitos de docencia e investigación). Estos beneficios para el usuario repercutirían en el propio sistema asistencial, al igual que toda nueva tecnología sanitaria que se incluye, aunque este beneficio se encuentra supeditado a la adaptación de los perfiles profesionales de los documentalistas en los centros hospitalarios.

Por otro lado, hay que tener en cuenta que generar y mantener terminologías es costoso, tanto en recursos humanos como en tiempo10. Estos costes pueden llegar a ser comparables a los que se producen para el desarrollo de nuevas ontologías, pero se reducen con respecto a su mantenimiento14,17; aunque pueden optimizarse si se opta por la reutilización de los recursos disponibles. Todos estos factores deberían ser valorados por los gestores en la toma de decisiones sobre la innovación y el desarrollo de SI clínicos.

 

Agradecimientos

Este trabajo forma parte del proyecto «Desarrollo de una ontología multilingüe para el dominio médico-farmacológico» (PI051438), financiado por el Fondo de Investigación Sanitaria en su convocatoria de 2005.

 

Bibliografía

1. Pons JMV, Castells X. Conocimiento, evaluación y práctica: introducción a una serie de artículos sobre evaluación de tecnologías médicas. Gac Sanit. 2003;5:420-1.        [ Links ]

2. Castiel DL, Álvarez-Dardet C. Las tecnologías de la información y la comunicación en salud pública: las precariedades del exceso. Rev Esp Salud Pública. 2005;79:331-7.        [ Links ]

3. Monteaguado Peña JL, Hernández Salvador C, García-López F. Metodología de introducción de servicios de e-Salud para el seguimiento y control de pacientes crónicos. Rev Esp Salud Pública. 2004;78:571-81.        [ Links ]

4. Perpiñá Tordera M. Conocimiento y práctica. Med Clin (Barc). 2005;124:215-6.        [ Links ]

5. Itami H. Mobilizing invisible assets. Cambridge: Harvard University Press; 1987.        [ Links ]

6. Nonaka I. A dynamic theory of organizational knowledge creation. Organization Science. 1994;5:14-37.        [ Links ]

7. Stead WW, Miller RA, Musen MA, Hersh WR. Integration and beyond: linking information from disparate source and into workflow. J Am Med Inform Assoc. 2000;7:135-45.        [ Links ]

8. Ciccarese P, Caffi E, Quaglini S, Stefanelli M. Architectures and tools for innovative health information systems: the Guide Project. Int J Med Inform. 2005;74:553-62.        [ Links ]

9. Escolar Castellón F, Carnicero Giménez de Azcárate J, coordinadores. El sistema integrado de información clínica. Informe 6 SEIS [monografía electrónica]. Madrid: Sociedad Española de Informática de la Salud; 2004 [citado 15 May 2005]. Disponible en: http://www.conganat.org/SEIS/informes/2004/PDF/informeseis2004.pdf        [ Links ]

10. Zweigenbaum P. Encoder l'information médicale: des terminologies aux systèms de représentation des connaissances. Innovation Stratégique en Information de Santé. 1999;2-3:27-47.        [ Links ]

11. Orueta JF, Urraca J, Berraondo I, Darpón J. ¿Es factible que los médicos de primaria utilicen CIE-9-MC? Calidad de la codificación de diagnósticos en las historias clínicas informatizadas. Gac Sanit. 2006;20:194-201.        [ Links ]

12. Codina C, Corominas N, Roca M, Tuset M, Del Cacho E, Soy D, et al. Estudio comparativo de la aplicación de un sistema experto en la prescripción de medicamentos. Med Clin (Barc). 1997;109:538-41.        [ Links ]

13. Arribas P, Cirera E, Tristán Polo M. Buscando una aguja en un pajar: las técnicas de conexión de registros en los sistemas de información sanitaria. Med Clin (Barc). 2004;122 Supl 1:16-20.        [ Links ]

14. Pisanelli DM, Gangemi A. If ontology is the solution, what is the problem? En: Pisanelli DM, editor. Ontologies in medicine. Studies in health technology and informatics. Volumen 102. Amsterdam: IOS Press; 2004. p. 1-19.        [ Links ]

15. Swartout B, Patil R, Knight K, Russ T. Toward distributed use of large-scale ontologies. En: Farquhar A, Gruninger M, Gómez-Pérez A, Uschold M, van der Vet P, editores. AAAI-97: Spring Symposium Series on Ontological Engineering. California: Stanford University; 1997. p. 138-48.        [ Links ]

16. Gruber TR. Toward principles for the design of ontologies used for knowledge sharing. En: Guarino N, Poli R, editores. Formal ontology in conceptual analysis and knowledge representation. Deventer: Kluwer Academic Publishers; 1993. Stanford University: Stanford Knowledge Systems Laboratory. Technical Report: KSL-93-04 [on line] [citado 10 Dic 2004]. Disponible en: http://ksl-web.stanford.edu/knowledge-sharing/papers/onto-design.rtf        [ Links ]

17. Guarino N, editor. Formal ontology in information systems. Proceedings of FOIS'98 Amsterdam: IOS Press; 1998. p. 3.        [ Links ]

18. Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American. 2001;284:34-43.        [ Links ]

19. Hripcsak G, Friedman C, Alderson PO, DuMouchel W, Johnson SB, Clayton PD. Unlocking clinical data from narrative reports. A study of natural language processing. Ann Intern Med. 1995;122:681-8.        [ Links ]

20. Recuperación de respuestas en documentos digitalizados (R2D2). Proyecto TIC2003-07158-C04 financiado por el Ministerio de Ciencia y Tecnología 2003-2006. Alicante: Grupo de Investigación en Procesamiento del Lenguaje y Sistemas Informáticos, Universidad de Alicante [actualizado 14 Ene 2005; citado 16 Dic 2005]. Disponible en: http://gplsi.dlsi.ua.es/r2d2/        [ Links ]

21. Clasificación Internacional de Enfermedades, 9.ª Revisión, Modificación Clínica (CIE-9-CM). 5.ª ed. Madrid: Ministerio de Sanidad y Consumo; 2006 [citado 16 Feb 2007]. Disponible en: http://www.msc.es/estadEstudios/ecie9mc/webcie9mc/webcie9mc.htm        [ Links ]

22. Medical Subject Headings (MeSH), Introduction 2004. Bethesda: US National Library of Medicine (NLM) [citado 5 Dic 2004]. Disponible en: http://www.nlm.nih.gov/mesh/introduction2004.html        [ Links ]

23. Descriptores en Ciencias de la Salud (DeCS), edición 2003. Biblioteca Virtual en Salud (bvs), Bireme [citado 5 Dic 2004]. Disponible en: http://decs.bvs.br/E/decs2003e.htm        [ Links ]

24. What is SNOMED CT (Clinical Terms). SNOMED Internacional [citado 16 Feb 2007]. Disponible en: http://www.snomed.org/snomedct/what_is.html        [ Links ]

25. The OpenGALEN Common Reference Model. OpenGALEN [citado 16 Feb 2007]. Disponible en: http://www.opengalen.org/themodel/structure.html        [ Links ]

26. Unified Medical Language System (UMLS). Bethesda: US National Library of Medicine (NLM) [actualizado 22 Mar 2004; citado 5 Dic 2004]. Disponible en: http://www.nlm.nih.gov/research/umls/about_umls.html        [ Links ]

27. Feliu J, Vivaldi J, Cabré MT. Ontologies: a review. Barcelona: Instituto Universitario de Lingüística Aplicada, Universitat Pompeu Fabra; 2002. Serie Informes nº 34.        [ Links ]

28. Chandrasekaran B, Josephson JR, Benjamins VR. What are ontologies, and why do we need them? IEEE Intell Syst. 1999;2:20-6.        [ Links ]

29. Uschold M, Jasper R. A framework for understanding and classifying ontology applications. En: Benjamins VR, Chandrasekaran B, Gómez-Pérez A, Guarino N, Uschold M, editores. Proceedings of the IJCAI-99: workshop on Ontologies and Problem-SolvingMethods (KRR5); August 2, 1999; Stockholm, Sweden [citado 16 Feb 2007]. Disponible en: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/Papers/uschold99.pdf        [ Links ]

30. Lassila O, McGuinness D. The role of frame-based representation on the Semantic Web. Electronic Transactions on Artificial Intelligence [revista electrónica]. 2001; 6(5) [citado 16 Dic 2005]. Disponible en: http://www.ep.liu.se/ea/cis/2001/005/cis01005.pdf        [ Links ]

31. Gómez-Pérez A, Fernández-López M, Corcho O. Ontological engineering. London: Springer-Verlag; 2004. p. 8, 11.        [ Links ]

32. Taboada M, González JL, Argüello M, Des J, Mira J, Martínez D. Adquisición de conocimiento médico para aplicaciones en telemedicina. En: González F, Zamarrón C, editores. Telemedicina. Aplicaciones y nuevas tecnologías. Santiago de Compostela: Sociedad Gallega de Telemedicina; 2004 [citado 27 Mar 2006]. Disponible en: http://aiff.usc.es/~elchus/personal/download/xornadastaboada.pdf        [ Links ]

33. Sobrado FJ, Pikatza JM, Larburu IU, García JJ, López de Ipiña D. Towards a clinical practice guideline implementation for asthma treatment. En: Conejo R, Urretavizcaya M, Pérez de la Cruz JL, editores. Current topics in artificial intelligence, lecture notes in artificial intelligence. Vol 3040. Berlin: Springer-Verlag; 2004. p. 587-96.        [ Links ]

34. Cimino JJ, Clayton PD, Hripcsak G, Jonson SB. Knowledge-based approaches to the maintenance of large controlled medical terminology. J Am Med Inform Assoc. 1994;1:35-50.        [ Links ]

 

 

Dirección para correspondencia:
Maria Teresa Romá Ferri.
Departamento de Enfermería.
Universidad de Alicante.
Campus de San Vicente del Raspeig.
Apdo. 99. 03080 Alicante. España.
Correo electrónico: mtr.ferri@ua.es

Recibido: 30 de julio de 2007.
Aceptado: 9 de enero de 2008.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons