SciELO - Scientific Electronic Library Online

 
vol.12 número3Persistencia a los inhibidores de la aromatasa en la cohorte SIDIAP: mortalidad e influencia de los bifosfonatosEstudio de la expresión de factores óseos en el hueso murino ante la falta de pleiotrofina y sus cambios en la situación inflamatoria índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Revista de Osteoporosis y Metabolismo Mineral

versão On-line ISSN 2173-2345versão impressa ISSN 1889-836X

Resumo

GINER, M et al. Biocompatibility and osseointegration study of new prosthetic materials. Rev Osteoporos Metab Miner [online]. 2020, vol.12, n.3, pp.92-97.  Epub 25-Jan-2021. ISSN 2173-2345.  https://dx.doi.org/10.4321/s1889-836x2020000300004.

Objetive

Bone implants are increasingly used in clinical practice and, among the materials, Ti or its alloys are offer the best performance given their physicochemical properties. Alloys such as TiNbTa have been shown to improve the biomechanical characteristics of commercial pure Ti (c.p.), however, its osseointegration capacity needs to be evaluated. The objective of the present study was to assess the cytotoxicity and the adhesion, proliferation and differentiation capacity of osteoblastic cells in culture, influenced by discs of TiNbTa material versus Ti c.p.

Material and methods

At 4 and 7 days after culture, we analyzed the MC3T3 cell line, cell viability (AlamarBlue Cell Viability Reagent. Invitrogen, Spain), as well as cell proliferation and differentiation (alkaline phosphatase activity (ALP) and scanning electron microscopy (Fixation for SEM) Student's t test was performed to determine statistically significant differences between the two groups of study discs.

Results

The results obtained show very good cell viability during the study period, with no significant differences for both materials. Likewise, we detected a drop in ALP levels that was significant for both components between days 4 and 7 of the study (p <0.05). Electron microscopy images revealed good adhesion capacity to the material, as well as cell differentiation against both types of discs.

Conclusions

The TiNbTa alloy as a material for bone implants offers good osseointegrative capacity, in addition to solving biomechanical problems that pure titanium presents as a component.

Palavras-chave : TiNbTa; cytotoxicity; biocompatibility; osteoblast cells; cell culture; cell adhesion; Young's modulus.

        · resumo em Espanhol     · texto em Espanhol | Inglês     · Inglês ( pdf ) | Espanhol ( pdf )