SciELO - Scientific Electronic Library Online

 
vol.29 número1Compuestos bioactivos de la dieta con potencial en la prevención de patologías relacionadas con sobrepeso y obesidad: péptidos biológicamente activosMicronutrientes que influyen en la respuesta immune en la lepra índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Nutrición Hospitalaria

versión On-line ISSN 1699-5198versión impresa ISSN 0212-1611

Nutr. Hosp. vol.29 no.1 Madrid ene. 2014

https://dx.doi.org/10.3305/nh.2014.29.1.6775 

REVISION

 

From dehydration to hyperhidration isotonic and diuretic drinks and hyperhydratant aids in sport

De la deshidratación a la hiperhidratación; bebidas isotónicas y diuréticas y ayudas hiperhidrantes en el deporte

 

 

Aritz Urdampilleta1,2,3 and Saioa Gómez-Zorita3,4

1Professor of Physiology and Sports Nutrition Effort. Public Center for Teaching Sports. KIROLENE. Basque Government
2Department of Physiology. Faculty of Pharmacy. University of the Basque Country UPV/EHU (UPV-EHU)
3Scientific Advisory-Technical Planning for Sports. NUTRIAKTIVE
4Department of Pharmacy and Food Science. Faculty of Pharmacy. University of the Basque Country UPV/EHU (UPV-EHU). Vitoria-Gasteiz. Spain

Correspondence

 

 


ABSTRACT

The needs of water and electrolytes are quite variants, depending on age, physiological or environmental conditions. In most long-term sports, usual weight loss of 3-6%, affect in athletic performance. The effects of a 6% dehydration could be improved with individualized diet-specific nutritional strategies and allow only a 2-3% dehydration, which affect metabolic efficiency but will not risk the health. On the contrary, hyperhydration can be dangerous and is associated with hyponatremia that can cause cerebral edema or respiratory failure. Sports drinks should moisturize, providing minerals and carbohydrates and increase the absorption of water by an ideal combination of salts and sugars. Therefore, it is important to provide correct hydration-protocols before, during and after physical activity, as well as know possible limitations of the sport.

Key words: Hydration. Dehydration. Sport. Diuretic drinks. Hyperhydration.


RESUMEN

Las necesidades de agua y electrolitos son variantes, según la edad, estado fisiológico o condiciones ambientales. En la mayoría de deportes de larga duración, es habitual una pérdida de peso de un 3-6%, que repercutirá en el rendimiento deportivo. Los efectos de un 6% de deshidratación podrían mejorarse con estrategias dietéticonutricionales específicas e individualizadas y permitir únicamente un 2-3% de deshidratación, que afectará a la eficiencia metabólica pero no tendrá riesgo para la salud. Al contrario, la hiperhidratación también puede ser peligrosa, asociándose a hiponatremia que puede provocar edema cerebral o insuficiencia respiratoria. Las bebidas isotónicas deben hidratar, aportar sales minerales e hidratos de carbono y aumentar la absorción de agua mediante la combinación de sales minerales y azucares. Por ello, es importante aportar correctos protocolos de hidratación antes, durante y después de la actividad física, así como conocer las limitaciones a las que la práctica deportiva nos pueda llevar.

Palabras clave: Hidratación. Deshidratación. Deporte. Bebidas diuréticas. Hiperhidratación.


 

Introduction

The need of water and electrolytes vary according to age, physiological or environmental conditions. Up to 50-65% of total body weight is water and if this ratio is out of limits, it can reach states of dehydration or overhydration, which could endanger the health of the athlete.1

Water is an essential part of the body fluids and the means of transport of substances, is part of various bodily secretions and is the medium where biochemical reactions occur. From the standpoint of digestive physiology it attends multiple processes and regulates body temperature. The main functions of water in relation to physical activity are: transport of oxygen to tissues, hormones and nutrients as well as carbon dioxide and other metabolic wastes; containing blood pH buffering agents, and helps dissipate heat. Individuals with less body water (women, obese, elderly) have increased risk of dehydration and should control more their hydration.2 The amount of water varies greatly depending on the tissue: blood containing 80%, 70% muscle and adipose tissue of 20-25%. Thus, subjects with more fat, less water will. Athletes who have more blood volume and muscle, have high levels of body water (60-65%), if they are hydrated.3 This decreases their susceptibility to dehydration.

However, long-term sports (marathon, triathlon ...) of more than 4 hours, the usual 3-6% loss of body weight, which will impact on the health and is a limiting factor in athletic performance.4 The effects of 6% dehydration could be improved with specific dietary and nutritional strategies and individualized, and allow only 2-3% dehydration, which affect the metabolic efficiency but will not pose a health risk.5

 

Method

A search was made on the basis of Pubmed, Scirus, SciELO, SportDiscus, Embase and Scopus data. We have also obtained documents with the search engine "Google Scholar" and a snowball strategy, in order to get more items.

Keywords coincide with the descriptors of Medical Subject Headings (MeSH) ("sport" OR "hydration" OR "replacement fluid" OR "isotonic drinks" OR "sport drinks" AND "recovery drinks" AND "nutritional aids" AND settled "hyperhidration" in both English and Castilian). Search was done between the years 2006-2013, integrating other relevant articles through the snowball search strategy.

 

Studies on dehydration and hyperhydration

A mild dehydration (2%) is the limit in which the decay of physical and cognitive performance begins. It reduces plasma volume, increases heart rate (HR) decreases blood flow to the skin, sweating and heat dissipation is reduced and body temperature increases by 1o C, and when it reaches 39o C, performance fell drastically by a malfunction of energy production and neuropsychological impairment.6 This causes dehydration concentration in sports (motorcycling, formula 1)7 to reduce the performance.

Thus we can classify the effects of dehydration levels (table I).

The 5% dehydration exercises which exceed the anaerobic threshold for 10', affects the anabolic/catabolic state. It increases cortisol and consequently the same load of exercise may prove more fatiguing.9

On the other hand, hyperhydration (common in endurance races) can also be hazardous,10 being associated with hyponatremia. It can cause cerebral edema or respiratory failure.11 Dilutional hyponatremia is characterized by a plasma concentration of sodium (Na) less than 135 mEq/L. The incidence increases from 6-8 hours (> 30o C and relative humidity 55%), it is associated with a lack of heat acclimatization, Na loss by excessive intake of water or hypotonic beverages. It is treated with hypertonic beverages, as those used after sporting events12 and with proper heat acclimatization for 7-14 days (training in hot and high humidity environments).

In Athletics ultra-marathon races (120-160 km), because of the difficulty of ingesting adequate amounts of liquids, states of dehydration (3-6%) occur in 50% of marathoners and 30% suffer from hyponatremia.13 However, cyclists in races of ultra-endurance can ingest a larger amount of beverage, as there is less stomach movement. Knechtle B et al.,14 studied ultraendurance "non-stop" races of more than 1 day. Cyclists ingested 0.7 l/h of isotonic beverage and increased the density of the urine and 1.4% weight loss was observed.

In sports of short duration, such as those of high intensity force, dehydration reduces the ability of the central nervous system to stimulate muscle contraction. 15 Thus, 3% dehydration reduces strength in the upper body by 8% and 19% of the lower body.16

In turn, in swimmers, we observe differences in respect to other water sports. If the water temperature is below that of the body, sweat loss is smaller. Therefore, despite the high relative humidity (indoor) (65-80%), the rate of sweating barely reaches 0.5-0.7 l/hour, 1-2% weight loss competitions of 2 hours and up to 2.5% in 3 hour competitions.17 During training high water losses (0.5-l/h) have not been observed, and these are compensated with an intake of sports drinks during the workouts.18

 

Water and electrolyte needs in sport

It is important to know where the hydric losses and intakes come from. Among the daily losses we have urine (1-2 L), sweat (0,1 L), transpiration (0,3 L) and faeces (0,1 L). Water taken (2-4 L), comes from drinks (1-3 L), food (1,6 L) and metabolic water (0,4 L).19 In sport, through breathing and sweating losses may reach 2-4 l/h. The water needs depend on the intensity of the activity and thermal stress, 0.7-1 l/h of isotonic drink during activity should be taken.20 The drink should contain 0.5-0.7 g Na/l in sports of 2-3 hours and Na 0.7-1.2 g/l in ultra-endurance.21

It is difficult to assess the needs of each group or individual, as they vary a lot even in the same individual depending on several factors such as environmental conditions and physical activity.22

In sports, to dissipate heat it occurs mainly through sweating, not to mention losses due to hyperventilation. 23 Thus, it is considered normal for someone sedentary the intake of 2 l/d24 3 l/d20 in an active person.

In the sporting context electrolytes are critical (table II).

 

Characteristics of isotonic drinks

Sports drinks should: hydrate and prevent dehydration during sports activity, provide mineral salts (mainly Na and Cl and P); provide carbohydrates (HC) increase the absorption of water by the combination of mineral salts and sugars (fast and slow absorption in a ratio of 3/1).

For hydration to be adequate, drinks during the competition must be isotonic (200-320 mOsm/kg water). During physical activity, in sports with a duration of less than 1 hour, international institutions recommend not exceeding 6-9% in the concentration of HC.21

Some authors recommend a maximum intake of 90 g/h HC in ultra-endurance competitions, but these amounts may cause gastrointestinal discomfort. 25 Despite this, athletes who tolerate HC more during the competition, are those with the highest performance. So the latest recommendations on long-term athletes are 60-90 g of HC/h, especially after 4 h.26

Optimal amounts of intestinal absorption are 600-800 ml/h water, 60 g glucose27 and up to 90 g of maltodextrin and fructose,28 the latter can give gastrointestinal problems. Therefore it is not recommended that the beverage contains more than 20-30% fructose.

Lower temperatures (10o C) slow the absorption of the beverage and above 20o C are not desirable. It is important to maintain proper temperature of the drink, especially in hot environments being able to use ice cubes and keep it cool and appetizing as well.29

 

Diuretic drinks and their effects on hydration

There are diuretic beverages, such as alcohol. So if the alcohol is 2% it can hydrate but 4%30 dehydrates (beer, cider, wine). As beer has a high glycemic index, it could help the recovery of muscle glycogen postexercise, but sports drinks are more appropriate to have a correct osmolarity, salt concentration and optimal HC.

There has also been controversy about taking high doses of caffeine (300 mg/d), for their diuretic effects. However, according to Maughan et al.,31 the diuretic effect of caffeine can be significant in unaccustomed sportsmen. According to Del Coso et al.32 in cyclists accustomed to 63% heat VO2max 2 h with 6 mg caffeine/kg, it was observed that it increased diuresis (28%) and loss of electrolyte (14%). But these effects diminished if taken with isotonic drink, not affecting an exercise of 2 h at 36o C, thus its effects could only be observed in very long distance races and not exposed to heat. Nor has the diuretic effect of tea on regular users been found, and yet it seems to improve mood.33

The hydration protocol (table III) must be individualized to each sport, environmental conditions and needs. This should be investigated in each team-athlete the loss of water and Na, under given conditions.34

 

Hyperhidrant ergonutritional aids

Another strategy is to increase the use of Hyperhidrant moisturizing agents (table IV).

 

References

1. Noakes TD. Commentary: role of hydration in health and exercise. BMJ 2012; 345: e4171.         [ Links ]

2. Buffa R, Floris GU, Putzu PF, Marini E. Body Composition Variations in Ageing. Coll Antropol 2011; 35 (1): 259-65.         [ Links ]

3. Neufer PD, Sawka MN, Young AJ, et al. Hypohydration does not impair skeletal muscle glycogen resynthesis after exercise. J Appl Physiol 1991; 70: 1490-4.         [ Links ]

4. Clemente VJ, Muñoz VE, Martinez A. Fatiga del sistema nervioso después de realizar un test de capacidad de sprints repetidos (RSA) en jugadores de fútbol de categoría juvenil. Apunts. Medicina de l'Esport 2011; 46 (172): 177-82.         [ Links ]

5. Jeukendrup AE, Currell K, Clarke J, et al. Effect of beverage glucose and sodium content on fluid delivery. Nutrition and metabolism 2009; 6: 9.         [ Links ]

6. Maughan RJ, Shirreffs SM, Watson P. Exercise, heat, hydration and the brain. J Am Coll Nutr 2007; 26 (5): 604S-612S.         [ Links ]

7. Brearley MB, Finn JP. Responses of motor-sport athletes to v8 supercar racing in hot conditions. Int J Sports Physiol Perform 2007; 2 (2): 182-91.         [ Links ]

8. Casa DJ, Stearns RL, Lopez RM, et al. Influence of hydration on physiological function and performance during trail running in the heat. J Athl Train 2010; 45 (2): 147-56.         [ Links ]

9. Maresh CM, Whittlesey MJ, Armstrong LE, et al. Effect of hydration state on testosterone and cortisol responses to training-intensity exercise in collegiate runners. Int J Sports Med 2006; 27 (10): 765-70.         [ Links ]

10. Wagner S, Knechtle B, Knechtle P, et al. Higher prevalence of exercise-associated hyponatremia in female than in male open-water ultra-endurance swimmers: the "Marathon-Swim" in Lake Zurich. Eur J Appl Physiol 2012; 112 (3): 1095-106.         [ Links ]

11. Urso C, Brucculeri S, Caimi G. Hyponatremia and physical exercise. Clin Ter 2012; 163 (5): e349-e356.         [ Links ]

12. Stuempfle KJ. Exercise-associated hyponatremia during winter sports. Phys Sportsmed 2010; 38 (1): 101-6.         [ Links ]

13. Hoffman MD, Stuempfle KJ, Rogers IR, et al. Hyponatremia in the 2009 161-km Western States Endurance Run. Int J Sports Physiol Perform 2012; 7 (1): 6-10.         [ Links ]

14. Knechtle B, Knechtle P, Rosemann T. No case of exercise-associated hyponatremia in male ultra-endurance mountain bikers in the "Swiss Bike Masters". Chin J Physiol 2011; 54 (6): 379-84.         [ Links ]

15. Judelson DA, Maresh CM, Farrell MJ, et al. Effect of hydration state on strength, power, and resistance exercise performance. Med Sci Sport Exerc 2007; 39: 1817-24.         [ Links ]

16. Jones LC, Cleary MA, Lopez RM, et al. Active Dehydration Impairs Upper and Lower Body Anaerobic Muscular Power. J Strength Cond Res 2008; 22: 455-63.         [ Links ]

17. Soler R, Echegaray M, Rivera MA. Thermal responses and body fluid balance of competitive male swimmers during a training session. J Strength Cond Res 2003; 17 (2): 362-7.         [ Links ]

18. Maughan RJ, Dargavel LA, Hares R, et al. Water and salt balance of well-trained swimmers in training. Int J Sport Nutr Exerc Metab 2009; 19 (6): 598-606.         [ Links ]

19. Bueno M, Fleta J, García S, et al. El agua y su regulación en el cuerpo humano. Requerimientos y tipos de agua de bebida. Anales de Ciencias de la Salud 2006; 9: 7-31.         [ Links ]

20. Palacios N, Franco L, Manonelles P, et al. Consenso sobre bebidas para el deportista. Composición y pautas de reposición de líquidos. Documento de consenso de la Federación Española de Medicina del Deporte. Archivos de Medicina del Deporte 2008; 15: 245-58.         [ Links ]

21. American College of Sports Medicine (ACSM). Exercise and Fluid Replacement. Special Communications. Med Sci Sports Exerc 2007; 39: 377-90.         [ Links ]

22. Urdampilleta A, Martínez-Sanz JM. Evaluación nutricional Deportiva. Valencia: Universitat de Valencia; 2011.         [ Links ]

23. Murray B. Hydration and physical performance. J Am Coll Nutr 2007; 26 (5): S542-S548.         [ Links ]

24. Asociación Española de Gastroenterología (AEG), et al. Documento de consenso: Consejos de hidratación con bebidas con sales minerales e ingesta recomendada en los procesos de rehidratación y deshidratación leve. 2010.         [ Links ]

25. Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci 2011; 29 (1): S91-S99.         [ Links ]

26. Pfeiffer B, Stellingwerff T, Hodgson AB, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc 2012; 44 (2): 344-51.         [ Links ]

27. Rehrer NJ. Fluid and electrolyte balance in ultraendurance sport. Sports Med 2001; 31: 701-15.         [ Links ]

28. Murray B. Hydration and physical performance. J Am Coll Nutr 2007; 26 (5): S542-S548.         [ Links ]

29. Burke L. Fasting and recovery from exercise. Br J Sports Med 2010; 44: 502-8.         [ Links ]

30. Hobson RM, Maughan RJ. Hydration status and the diuretic action of a small dose of alcohol. Alcohol 2010; 45 (4): 366-73.         [ Links ]

31. Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet 2003; 16 (6): 411-20.         [ Links ]

32. Del Coso J, Estevez E, Mora-Rodriguez R. Caffeine during exercise in the heat: thermoregulation and fluid-electrolyte balance. Med Sci Sports Exerc 2009; 41 (1): 164-73.         [ Links ]

33. Scott D, Rycroft JA, Aspen J, et al. The effect of drinking tea at high altitude on hydration status and mood. Eur J Appl Physiol 2004; 91 (4): 493-8.         [ Links ]

34. Maughan RJ, Watson P, Evans GH, et al. Water balance and salt losses in competitive football. Int J Sport Nutr Exerc Metab 2007; 17 (6): 583-94.         [ Links ]

35. Evans GH, Shirreffs SM, Maughan RJ. Postexercise rehydration in man: the effects of osmolality and carbohydrate content of ingested drinks. Nutrition 2009; 25 (9): 905-13.         [ Links ]

36. Roses JM, Puyol P. Hidratación y ejercicio físico. Apunts. Medicina de l'Esport 2006; 41 (150): 70-7.         [ Links ]

37. De Oliveira EP, Burini RC. Food-dependent, exercise-induced gastrointestinal distress. J Int Soc Sports Nutr 2011; 28: 8-12.         [ Links ]

38. Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports 2010; 20 (1): 112-21.         [ Links ]

39. Witard OC, Jackman SR, Kies AK, et al. Effect of increased dietary protein on tolerance to intensified training. Med Sci Sports Exerc 2011; 43 (4): 598-607.         [ Links ]

40. Negro M, Giardina S, Marzani B, et al. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J Sports Med Phys Fitness 2008; 48: 347-51.         [ Links ]

41. Kratzing C. Pre-operative nutrition and carbohydrate loading. Proc Nutr Soc 2011; 70 (3): 311-5.         [ Links ]

42. Urdampilleta A, Vicente-Salar N, Martínez Sanz JM. Necesidades proteicas de los deportistas y pautas diétetico-nutricionales para la ganancia de masa muscular. Rev Esp Nutr Hum Diet 2012; 16: 25-35.         [ Links ]

43. Easton C, Turner S, Pitsiladis YP. Creatine and glycerol hyperhydration in trained subjects prior to exercise in the heat. International Journal of Sport Nutrition and Exercise Metabolism 2007; 17 (1): 70-91.         [ Links ]

44. Beis LY, Polyviou T, Malkova D,Pitsiladis P. The effects of creatine and glycerol hyperhydration on running economy in well trained endurance runners. Journal of the International Society of Sports Nutrition 2011; 8: 24.         [ Links ]

45. Goulet EDB. Glycerol-Induced Hyperhydration: A Method for Estimating the Optimal Load of Fluid to Be Ingested Before Exercise to Maximize Endurance Performance. Journal of Strength & Conditioning Research 2010; 24 (1): 74-8.         [ Links ]

46. Rico-Sanz, J. Efectos de suplementación de creatina en el metabolismo muscular y energético. Archivos de Medicina del Deporte 1997; 61: 391-6.         [ Links ]

47. Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of Applied Physiology 2000; 89 (3): 1165-71.         [ Links ]

48. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Am Diet Assoc 2009; 109: 509-27.         [ Links ]

 

 

Correspondence:
Aritz Urdampilleta
Departamento de Fisiología
Facultad de Farmacia. Universidad del País Vasco (UPV-EHU)
C/ Paseo de las Universidades, 71
1006 Vitoria-Gasteiz. España
E-mail: aritz.urdampilleta@ehu.es

Recibido: 14-IX-2013
Aceptado: 6-XII-2013

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons