SciELO - Scientific Electronic Library Online

 
vol.31 número3Vectores de impedancia bioeléctrica de referencia para la población españolaEvaluación de fiabilidad y consistencia de la herramienta "malnutrition inflammation score (MIS)" en adultos mexicanos con enfermedad renal crónica para diagnóstico del sindrome de desgaste proteínico energético (DPE) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Nutrición Hospitalaria

versión On-line ISSN 1699-5198versión impresa ISSN 0212-1611

Resumen

VILA-CANDEL, R. et al. Can we improve the birth weight prediction?: the effect of normal BMI using a multivariate model. Nutr. Hosp. [online]. 2015, vol.31, n.3, pp.1345-1351. ISSN 1699-5198.  http://dx.doi.org/10.3305/nh.2015.31.3.8150.

Objective: The construction of a predictive model that improves the estimation of the fetal weight (EFW). Study Design: a comparative, descriptive study. One hundred forty pregnant women were recruited at two-stage sample in health department in Spain. They were classified in four groups depending on the pre-gestational BMI. Fetal weight at term was estimated by ultrasound at 33-35 weeks (EFW40w) by one gynecologist. A regression model was created with the variables that reacted to the newborn's weight, symphysis-fundal height (SFH), EFW40w, gestational age (GA), ferritin level and cigarettes smoked. Results: A multivariate model was created for the NW group to estimate the fetal weight (EFWme), resulting in R2=0.727 (p<0.001). The differences of the averages obtained between EFW40w and EFWme, with the newborn's weight were significant (p<0.001). EFWme underestimates birth weight by 0.07 g (mean error 0.53%), and EFW40w overestimates it by 300.89 g (mean error 10.12%). In order to evaluate the predictive model and verify the predictions we used the Bland-Altman analysis. The average error in estimating the birth weight with EFWme was 1.94% underestimating the result, whereas the ultrasound error overestimated the result 10.93%. Conclusion: The multivariate model created for the NW group improves the accuracy of the ultrasound.

Palabras clave : Birth weight; Pregnancy; Ultrasound; Anthropometry; Multivariate analysis.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons