SciELO - Scientific Electronic Library Online

 
vol.22 número1Las investigaciones sobre promoción y educación para la salud en las etapas de infantil y primaria de la escuela española: Una revisión de los estudios publicados entre 1995 y 2005Lipoatrofia semicircular: un nuevo trastorno de salud relacionado con el trabajo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Gaceta Sanitaria

versión impresa ISSN 0213-9111

Resumen

TRUJILLANO, Javier et al. Approach to the methodology of classification and regression trees. Gac Sanit [online]. 2008, vol.22, n.1, pp.65-72. ISSN 0213-9111.

Objective: To provide an overview of decision trees based on CART (Classification and Regression Trees) methodology. As an example, we developed a CART model intended to estimate the probability of intrahospital death from acute myocardial infarction (AMI). Method: We employed the minimum data set (MDS) of Andalusia, Catalonia, Madrid and the Basque Country (2001-2002), which included 33,203 patients with a diagnosis of AMI. The 33,203 patients were randomly divided (70% and 30%) into the development (DS; n = 23,277) and the validation (VS; n = 9,926) sets. The CART inductive model was based on Breiman's algorithm, with a sensitivity analysis based on the Gini index and cross-validation. We compared the results with those obtained by using both logistic regression (LR) and artificial neural network (ANN) (multilayer perceptron) models. The developed models were contrasted with the VS and their properties were evaluated with the area under the ROC curve (AUC) (95% confidence interval [CI]). Results: In the DS, the CART showed an AUC = 0.85 (0.86-0.88), LR 0.87 (0.86-0.88) and ANN 0.85 (0.85-0.86). In the VS, the CART showed an AUC = 0.85 (0.85-0.88), LR 0.86 (0.85-0.88) and ANN 0.84 (0.83-0.86). Conclusions: None of the methods tested outperformed the others in terms of discriminative ability. We found that the CART model was much easier to use and interpret, because the decision rules generated could be applied without the need for mathematical cal

Palabras clave : Classification and Regression Trees; Artificial Neural Networks; Logistic Regression.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons