SciELO - Scientific Electronic Library Online

 
vol.28 número4La voz de las mujeres sometidas a mutilación genital femenina en la Región de MurciaExposición a plaguicidas persistentes y no persistentes en población no expuesta laboralmente de la isla de Tenerife índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Gaceta Sanitaria

versión impresa ISSN 0213-9111

Resumen

CODERCH, Jordi et al. Predicting individual risk of high healthcare cost to identify complex chronic patients. Gac Sanit [online]. 2014, vol.28, n.4, pp.292-300. ISSN 0213-9111.  http://dx.doi.org/10.1016/j.gaceta.2014.03.003.

Objective: To develop a predictive model for the risk of high consumption of healthcare resources, and assess the ability of the model to identify complex chronic patients. Methods: A cross-sectional study was performed within a healthcare management organization by using individual data from 2 consecutive years (88,795 people). The dependent variable consisted of healthcare costs above the 95th percentile (P95), including all services provided by the organization and pharmaceutical consumption outside of the institution. The predictive variables were age, sex, morbidity-based on clinical risk groups (CRG)-and selected data from previous utilization (use of hospitalization, use of high-cost drugs in ambulatory care, pharmaceutical expenditure). A univariate descriptive analysis was performed. We constructed a logistic regression model with a 95% confidence level and analyzed sensitivity, specificity, positive predictive values (PPV), and the area under the ROC curve (AUC). Results: Individuals incurring costs >P95 accumulated 44% of total healthcare costs and were concentrated in ACRG3 (aggregated CRG level 3) categories related to multiple chronic diseases. All variables were statistically significant except for sex. The model had a sensitivity of 48.4% (CI: 46.9%-49.8%), specificity of 97.2% (CI: 97.0%-97.3%), PPV of 46.5% (CI: 45.0%-47.9%), and an AUC of 0.897 (CI: 0.892 to 0.902). Conclusions: High consumption of healthcare resources is associated with complex chronic morbidity. A model based on age, morbidity, and prior utilization is able to predict high-cost risk and identify a target population requiring proactive care.

Palabras clave : Forecasting; Risk adjustment; Morbidity; Chronic disease; Frail elderly; Logistic models; Health care costs; Integrated health care systems.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons