SciELO - Scientific Electronic Library Online

SciELO - Scientific Electronic Library Online

Referencias del artŪculo

ESTIVILL-TORRUS, Guillermo et al. Función del ácido lisofosfatídico como regulador lipídico modulador del comportamiento. Escritos de Psicología [online]. 2011, vol.4, n.3, pp.1-14. ISSN 1989-3809.

    1. Abi-Dargham, A., Laruelle, M., Aghajanian, G.K., Charney, D. y Krystal, J. (1997). The role of serotonin in the pathophysiology and treatment of schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 1-17. [ Links ]

    2. Aimone, J.B., Deng, W. y Gage, F.H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70, 589-596. http://dx.doi.org/10.1016/j.neuron.2011.05.010 [ Links ]

    3. Akbarian, S., Bunney, W.E., Jr., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A. y Jones, E.G. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50, 169-177. [ Links ]

    4. Allan, C.L., Cardno, A.G. y McGuffin, P. (2008). Schizophrenia: from genes to phenes to disease. Current Psychiatry Reports, 10, 339-343. http://dx.doi.org/10.1007/s11920-008-0054-x [ Links ]

    5. Anliker, B. y Chun, J. (2004). Lysophospholipid G protein-coupled receptors. Journal of Biological Chemistry, 279, 20555-20558. http://dx.doi.org/10.1074/jbc.R400013200 [ Links ]

    6. Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Seminars in Cell & Developmental Biology, 15, 477-489. http://dx.doi.org/10.1016/j.semcdb.2004.05.001 [ Links ]

    7. Aoki, J., Inoue, A. y Okudaira, S. (2008). Two pathways for lysophosphatidic acid production. Biochimica et Biophysica Acta, 178, 513-518. [ Links ]

    8. Arguello, P.A. y Gogos, J.A. (2010). Cognition in mouse models of schizophrenia susceptibility genes. Schizophrenia Bulletin, 36, 289-300. http://dx.doi.org/10.1093/schbul/sbp153 [ Links ]

    9. Ayhan, Y., Sawa, A., Ross, C.A. y Pletnikov, M.V. (2009). Animal models of gene-environment interactions in schizophrenia. Behavioral Brain Research, 204, 274-281. http://dx.doi.org/10.1016/j.bbr.2009.04.010 [ Links ]

    10. Bains, J.S. y Oliet, S.H. (2007). Glia: they make your memories stick! Trends in Neurosciences, 30, 417-424. http://dx.doi.org/10.1016/j.tins.2007.06.007 [ Links ]

    11. Belzung, C. y Griebel, G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioral Brain Research, 125, 141-149. http://dx.doi.org/10.1016/S0166-4328(01)00291-1 [ Links ]

    12. Benarroch, E.E. (2007). Rho GTPases: role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology, 68, 1315-1318. http://dx.doi.org/10.1212/01.wnl.0000259588.97409.8f [ Links ]

    13. Benes, F.M. y Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25, 1-27. http://dx.doi.org/10.1016/S0893-133X(01)00225-1 [ Links ]

    14. Benes, F.M., Todtenkopf, M.S. y Kostoulakos, P. (2001). GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus, 11, 482-491. http://dx.doi.org/10.1002/hipo.1065 [ Links ]

    15. Berger, M., Gray, J.A. y Roth, B.L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355-336. http://dx.doi.org/10.1146/annurev.med.60.042307.110802 [ Links ]

    16. Birgbauer, E. y Chun, J. (2006). New developments in the biological functions of lysophospholipids. Cellular and Molecular Life Sciences, 63, 2695-2701. http://dx.doi.org/10.1007/s00018-006-6155-y [ Links ]

    17. Björklund, A., Dunnet, S.B., Stenevi, U., Lewuis, M.E. e Iversen, S.D. (1980). Reinervation of the denervate striatum by substantia nigra. Brain Research, 199, 307-333. [ Links ]

    18. Bowden, N.A., Weidenhofer, J., Scott, R.J., Schall, U., Todd, J., Michie, P.T. y Tooney, P.A. (2006). Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophrenia Research, 82, 175-183. http://dx.doi.org/10.1016/j.schres.2005.11.012 [ Links ]

    19. Braff, D.L., Geyer, M.A., y Swerdlow, N.R. (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 156, 234-258. http://dx.doi.org/10.1007/s002130100810 [ Links ]

    20. Bressan, R.A y Pilowsky, L.S. (2000). Imaging the glutamatergic system in vivo--relevance to schizophrenia. European Journal of Nuclear Medicine, 27, 1723-1731. http://dx.doi.org/10.1007/s002590000372 [ Links ]

    21. Bures, J., Buresova, O. y Huston, J.P. (1983). Techniques and basic experiments for the study of brain and behaviour. Elsevier Science Publishers: Amsterdam. [ Links ]

    22. Cammarota, M., Bevilaqua, L.R., Medina, J.H. e Izquierdo I. (2008). ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behavioral Brain Research, 195, 120-128. http://dx.doi.org/10.1016/j.bbr.2007.11.029 [ Links ]

    23. Cardno, A.G. y Gottesman, I.I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medicine and Genetics, 97, 12-17. http://dx.doi.org/10.1002/(SICI)1096-8628(200021)97:1<12::AID-AJMG3>3.0.CO;2-U [ Links ]

    24. Castilla-Ortega, E., Sanchez-Lopez, J., Hoyo-Becerra, C., Matas-Rico, E., Zambrana-Infantes, E., Chun, J., De Fonseca, F.R., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2010). Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiology of Learning and Memory, 94, 73-82. http://dx.doi.org/10.1016/j.nlm.2010.04.003 [ Links ]

    25. Castilla-Ortega, E., Pedraza, C., Estivill-Torrús, G. y Santín, L.J. (2011). When is adult hippocampal neurogenesis necessary for learning? Evidence from animal research. Reviews in Neuroscience, 22, 267-283. http://dx.doi.org/10.1515/RNS.2011.027 [ Links ]

    26. Castilla-Ortega, E., Hoyo-Becerra, C., Pedraza, C., Chun, J., Rodríguez de Fonseca, F., Estivill-Torrús, G. y Santín, L.J. (2011). Aggravation of the Pathological Consequences of Chronic Stress on Hippocampal Neurogenesis and Spatial Memory in Mice Lacking the Lysophosphatidic Acid LPA1 Receptor. PLoS ONE 6: e25522. http://dx.doi.org/10.1371/journal.pone.0025522 [ Links ]

    27. Chalmers, D.T. y Watson, S.J. (1991). Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain - a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Research, 561, 51-60. http://dx.doi.org/10.1016/0006-8993(91)90748-K [ Links ]

    28. Champagne, D., Dupuy, J.B., Rochford, J. y Poirier, J. (2002). Apolipoprotein E knockout mice display procedural deficits in the morris water maze: analysis of learning strategies in three versions of the task. Neuroscience, 114, 641-654. http://dx.doi.org/10.1016/S0306-4522(02)00313-5 [ Links ]

    29. Choi, J.W., Lee, C.W. y Chun, J. (2008). Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochimica et Biophysica Acta, 1781, 531-539. http://dx.doi.org/10.1016/j.bbalip.2008.03.004 [ Links ]

    30. Choi, J.W., Herr, D.R., Noguchi, K., Yung, Y.C., Lee, C.W., Mutoh, T., Lin, M.E., Teo, S.T., Park, K.E., Mosley, A.N. y Chun, J. (2010). LPA receptors: subtypes and biological actions. Annual Review of Pharmacology and Toxicology, 50, 157-186. http://dx.doi.org/10.1146/annurev.pharmtox.010909.105753 [ Links ]

    31. Chun, J. (2005). Lysophospholipids in the nervous system. Prostaglandins and Other Lipid Mediators, 77, 46-51. http://dx.doi.org/10.1016/j.prostaglandins.2004.09.009 [ Links ]

    32. Chun J. (2007). How the lysophospholipid got its receptor. The Scientist, 21, 48-54. [ Links ]

    33. Chun, J., Weiner, J.A., Fukushima, N., Contos, J.J., Zhang, G., Kimura, Y., Dubin, A., Ishii, I., Hecht, J.H., Akita, C., Kaushal, D. (2000). Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Annals of the New York Academy of Sciences, 905, 110-117. http://dx.doi.org/10.1111/j.1749-6632.2000.tb06543.x [ Links ]

    34. Chun, J., Hla, T., Lynch, K.R., Spiegel, S. y Moolenaar, W.H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 62, 579-587. http://dx.doi.org/10.1124/pr.110.003111 [ Links ]

    35. Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D. y Chun, J. (2000). Requirement for the LPA1 ysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences USA, 97, 13384-13389. http://dx.doi.org/10.1073/pnas.97.24.13384 [ Links ]

    36. Cools, R., Nakamura, K. y Daw, N.D. (2011). Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology, 36, 98-113. http://dx.doi.org/10.1038/npp.2010.121 [ Links ]

    37. Coras, R., Siebzehnrubl, F.A., Pauli, E., Huttner, H.B., Njunting, M., Kobow, K., et al. (2010). Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans. Brain, 133, 3359-3372. http://dx.doi.org/10.1093/brain/awq215 [ Links ]

    38. Cosoff, S.J. y Hafner, R.J. (1998). The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder and bipolar disorder. Australian and New Zealand Journal of Psychiatry, 32, 67-72. http://dx.doi.org/10.3109/00048679809062708 [ Links ]

    39. Cunningham, M.O., Hunt, J., Middleton, S., LeBeau, F.E., Gillies, M.J., Davies, C.H. y Maycox, P.R., Whittington M.A., Racca C. (2006). Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. Journal of Neuroscience, 26, 2767-2776. http://dx.doi.org/10.1523/JNEUROSCI.5054-05.2006 [ Links ]

    40. Dash, P.K., Orsi, S.A., Moody, M. y Moore, A.N. (2004). A role for hippocampal Rho-ROCK pathway in long-term spatial memory. Biochemical and Biophysical Research Communications, 322, 893-898. http://dx.doi.org/10.1016/j.bbrc.2004.08.004 [ Links ]

    41. Deng, W., Aimone, J.B. y Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews in Neuroscience, 11, 339-350. http://dx.doi.org/10.1038/nrn2822 [ Links ]

    42. Derkinderen, P., Siciliano, J., Toutant, M. y Girault, J.A. (1998). Differential regulation of FAK+ and PYK2/Cakbeta, two related tyrosine kinases, in rat hippocampal slices: effects of LPA, carbachol, depolarization and hyperosmolarity. European Journal of Neuroscience, 10, 1667-1675. http://dx.doi.org/10.1046/j.1460-9568.1998.00174.x [ Links ]

    43. Desbonnet, L., Waddington, J.L. y Tuathaigh, C.M. (2009). Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behavioral Brain Research, 204, 258-273. http://dx.doi.org/10.1016/j.bbr.2009.04.001 [ Links ]

    44. Dockstader, C.L. y van der Kooy, D. (2001). Mouse strain differences in opiate reward learning are explained by differences in anxiety, not reward or learning. Journal of Neuroscience, 21, 9077-9081. [ Links ]

    45. Emamghoreishi, M., Schlichter, L., Li, P.P., Parikh, S., Sen, J., Kamble, A. y Warsh, J.J. (1997). High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. American Journal of Psychiatry, 154, 976-982. [ Links ]

    46. Estivill-Torrús, G., Llebrez-Zayas, P., Matas-Rico, E., Santín, L., Pedraza, C., De Diego, I., Del Arco, I., Fernández-Llebrez, P., Chun, J. y De Fonseca, F.R. (2008). Absence of LPA1 signaling results in defective cortical development. Cerebral Cortex, 18, 938-950. [ Links ]

    47. Fallon, J.H., Opole, I.O. y Potkin, S.G. (2003). The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clinical Neuroscience Research, 3, 77-107. http://dx.doi.org/10.1016/S1566-2772(03)00022-7 [ Links ]

    48. Fujiwara, Y., Sebok, A., Meakin, S., Kobayashi, T., Murakami- Murofushi, K. y Tigyi, G. (2003). Cyclic phosphatidic acid elicits neurotrophin-like actions in embryonic hippocampal neurons. Journal of Neurochemistry, 87, 1272-1283. http://dx.doi.org/10.1046/j.1471-4159.2003.02106.x [ Links ]

    49. Fukushima, N., Ishii, I., Habara, Y., Allen, C.B. y Chun, J. (2002). Dual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho. Molecular Biology of the Cell, 13, 2692-2705. http://dx.doi.org/10.1091/mbc.01-09-0465 [ Links ]

    50. Fukushima, N., Ye, X. y Chun, J. (2002). Neurobiology of lysophosphatidic acid signaling. Neuroscientist, 8, 540-550. http://dx.doi.org/10.1177/1073858402238513 [ Links ]

    51. Geyer, M.A., Krebs-Thomson, K., Braff, D.L. y Swerdlow, N.R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 156, 117-154. http://dx.doi.org/10.1007/s002130100811 [ Links ]

    52. Gogos, J.A. y Gerber, D.J. (2006). Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends in Pharmacological Sciences, 27, 226-233. http://dx.doi.org/10.1016/j.tips.2006.02.005 [ Links ]

    53. Goldshmit, Y., Munro, K., Yuen Leong, S., Pébay, A. y Turnley, A.M. (2010). LPA receptor expression in the central nervous system in health and following injury. Cell and Tissue Research, 341, 23-32. http://dx.doi.org/10.1007/s00441-010-0977-5 [ Links ]

    54. Goodman, T., Trouche, S., Massou, I., Verret, L., Zerwas, M., Roullet, P. y Rampon, C. (2010). Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience, 171, 769-778. http://dx.doi.org/10.1016/j.neuroscience.2010.09.047 [ Links ]

    55. Gould, E. y Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46, 1472-1479. http://dx.doi.org/10.1016/S0006-3223(99)00247-4 [ Links ]

    56. Harrison, S.M., Reavill, C., Brown, G., Brown, J.T., Cluderay, J.E., Crook, B., Davies, C.H., Dawson, L.A., Grau, E., Heidbreder, C., Hemmati, P., Hervieu, G., Howarth, A., Hughes, Z.A., Hunter, A.J., Latcham, J., Pickering, S., Pugh, P., Rogers, D.C., Shilliam, C.S. y Maycox, P.R. (2003). LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Molecular and Cellular Neuroscience, 24, 1170-1179. http://dx.doi.org/10.1016/j.mcn.2003.09.001 [ Links ]

    57. Hecht, J.H., Weiner, J.A., Post, S.R. y Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. Journal of Cell Biology, 135, 1071-1083. http://dx.doi.org/10.1083/jcb.135.4.1071 [ Links ]

    58. Henckens, M.J., Hermans, E.J., Pu, Z., Joëls, M. y Fernández, G. (2009). Stressed memories: how acute stress affects memory formation in humans. Journal of Neuroscience, 29, 10111-10119. http://dx.doi.org/10.1523/JNEUROSCI.1184-09.2009 [ Links ]

    59. Hennessy, R.J., Baldwin, P.A., Browne, D.J., Kinsella, A. y Waddington, J.L. (2007). Three-dimensional laser surface imaging and geometric morphometrics resolve frontonasal dysmorphology in schizophrenia. Biological Psychiatry, 61, 1187-1194. http://dx.doi.org/10.1016/j.biopsych.2006.08.045 [ Links ]

    60. Hoffman, H.S. e Ison, J.R. (1980). Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Reviews, 87, 175-189. http://dx.doi.org/10.1037/0033-295X.87.2.175 [ Links ]

    61. Honer, W.G., Falkai, P., Bayer, T.A., Xie, J., Hu, L., Li, H.Y., Arango, V., Mann, J.J., Dwork, A.J. y Trimble, W.S. (2002). Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cerebral Cortex, 12, 349-356. http://dx.doi.org/10.1093/cercor/12.4.349 [ Links ]

    62. Inta. D., Monyer, H., Sprengel, R., Meyer-Lindenberg, A. y Gass, P. (2010). Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review. Neuroscience & Biobehavioral Reviews, 34, 285-294. http://dx.doi.org/10.1016/j.neubiorev.2009.07.010 [ Links ]

    63. Ishii, I., Fukushima, N., Ye, X. y Chun, J. (2004). Lysophospholipid receptors: signaling and biology. Annual Reviews of Biochemistry, 73, 321-354. http://dx.doi.org/10.1146/annurev.biochem.73.011303.073731 [ Links ]

    64. Jacobs, B.L. y Azmitia, E.C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72, 165-229. [ Links ]

    65. Jin Rhee, H., Nam, J.S., Sun, Y., Kim, M.J., Choi, H.K., Han, D.H., Kim, N.H. y Huh, S.O. (2006). Lysophosphatidic acid stimulates cAMP accumulation and cAMP response element-binding protein phosphorylation in immortalized hippocampal progenitor cells. Neuroreport, 17, 523-526. http://dx.doi.org/10.1097/01.wnr.0000209011.16718.68 [ Links ]

    66. Joca, S.R., Ferreira, F.R. y Guimaraes, F.S. (2007). Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress, 10, 227-249. http://dx.doi.org/10.1080/10253890701223130 [ Links ]

    67. Joels, M., Karst, H., Krugers, H.J. y Lucassen, P.J. (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Frontiers in Neuroendocrinology, 28, 72-96. http://dx.doi.org/10.1016/j.yfrne.2007.04.001 [ Links ]

    68. Joëls, M. y Baram, T.Z. (2009) The neuro-symphony of stress. Nature Reviews in Neuroscience, 10, 459-466. [ Links ]

    69. Joëls, M., Fernandez, G. y Roozendaal, B. (2011). Stress and emotional memory: a matter of timing. Trends in Cognitive Sciences, 15, 280-288. http://dx.doi.org/10.1016/j.tics.2011.04.004 [ Links ]

    70. Jonnakuty, C. y Gragnoli, C. (2008). What do we know about serotonin? Journal of Cellular Physioly, 217, 301-306. http://dx.doi.org/10.1002/jcp.21533 [ Links ]

    71. Kameda, S.R., Frussa-Filho, R., Carvalho, R.C., Takatsu-Coleman, A.L., Ricardo, V.P., Patti, C.L., et al. (2007). Dissociation of the effects of ethanol on memory, anxiety, and motor behavior in mice tested in the plus-maze discriminative avoidance task. Psychopharmacology, 192, 39-48. http://dx.doi.org/10.1007/s00213-006-0684-9 [ Links ]

    72. Karoutzou, G., Emrich, H.M. y Dietrich, D.E. (2008). The myelin-pathogenesis puzzle in schizophrenia: a literature review. Molecular Psychiatry, 13, 245-260. http://dx.doi.org/10.1038/sj.mp.4002096 [ Links ]

    73. Kempermann, G., Krebs, J. y Fabel, K. (2008). The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Current Opinion in Psychiatry, 21, 290-295. http://dx.doi.org/10.1097/YCO.0b013e3282fad375 [ Links ]

    74. Kim, J.S., Kornhuber, H.H., Schmid-Burgk, W. y Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosciences Letter, 20, 379-382. http://dx.doi.org/10.1016/0304-3940(80)90178-0 [ Links ]

    75. Kingsbury, M.A., Rehen, S.K., Contos, J.J., Higgins, C.M. y Chun, J. (2003). Nonproliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nature Neuroscience, 6, 1292-1299. http://dx.doi.org/10.1038/nn1157 [ Links ]

    76. Koehl, M. y Abrous, D.N. (2011). A new chapter in the field of memory: adult hippocampal neurogenesis. European Journal of Neuroscience, 33, 1101-1114. http://dx.doi.org/10.1111/j.1460-9568.2011.07609.x [ Links ]

    77. Lam, D.D., Przydzial, M.J., Ridley, S.H., Yeo, G.S., Rochford, J.J., O'Rahilly, S. y Heisler, L.K. (1997). Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology, 149, 1323-1328. http://dx.doi.org/10.1210/en.2007-1321 [ Links ]

    78. e Strat, Y., Ramoz, N. y Gorwood, P. (2009). The Role of Genes Involved in Neuroplasticity and Neurogenesis in the Observation of a Gene-Environment Interaction (GxE) in Schizophrenia. Current Molecular Medicine, 9, 506-518. http://dx.doi.org/10.2174/156652409788167104 [ Links ]

    79. Leuner, B., Gould, E. y Shors, T.J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216-224. http://dx.doi.org/10.1002/hipo.20153 [ Links ]

    80. Lin, M.E., Herr, D.R. y Chun, J. (2010). Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins and Other Lipid Mediators, 91, 130-138. http://dx.doi.org/10.1016/j.prostaglandins.2009.02.002 [ Links ]

    81. Lisman, J.E., Schulman, H. y Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews in Neuroscience, 3, 175-190. http://dx.doi.org/10.1038/nrn753 [ Links ]

    82. López, J.F., Liberzon, I., Vázquez, D.M., Young, E.A. y Watson, S.J. 1999. Serotonin 1A receptor messenger RNA regulation in the hippocampus after acute stress. Biological Psychiatry, 45, 934-937. http://dx.doi.org/10.1016/S0006-3223(98)00224-8 [ Links ]

    83. Lu, W.Y., Xiong, Z.G., Lei, S., Orser, B.A., Dudek, E., Browning, M.D. y MacDonald, J.F. (1999). G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neuroscience, 2, 331-338. http://dx.doi.org/10.1038/7243 [ Links ]

    84. Macklis, J.D. (2001). Neurobiology: new memories from new neurons. Nature, 410, 314-315. http://dx.doi.org/10.1038/35066661 [ Links ]

    85. Malleret, G., Hen, R., Guillou, J.L., Segu, L. y Buhot, M.C. (1999). 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. Journal of Neuroscience, 19, 6157-6168. [ Links ]

    86. Marshall, F. y Titelbaum, P. 1974. Further analysis of sensory inattention flowing lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 86, 375-395. http://dx.doi.org/10.1037/h0035941 [ Links ]

    87. Matas-Rico, E., García-Diaz, B., Llebrez-Zayas, P., López-Barroso, D., Santín, L., Pedraza, C., Smith-Fernández, A., Fernández-Llebrez, P., Tellez, T., Redondo, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2008). Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Molecular and Cellular Neuroscience, 39, 342-355. http://dx.doi.org/10.1016/j.mcn.2008.07.014 [ Links ]

    88. McEwen, B.S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48, 721-731. http://dx.doi.org/10.1016/S0006-3223(00)00964-1 [ Links ]

    89. Mizuno, M., Yamada, K., He, J., Nakajima, A. y Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learning and Memory, 10, 108-115. http://dx.doi.org/10.1101/lm.56003 [ Links ]

    90. Moolenar, W.H., van Meeteren, L.A. y Giepmans, B.N.G. (2004). The ins and outs of lysophosphatidic acid signaling. BioEssays, 26, 870-881. http://dx.doi.org/10.1002/bies.20081 [ Links ]

    91. Mueller, N.K. y Beck, S.G. (2000). Corticosteroids alter the 5-HT(1A) receptor-mediated response in CA1 hippocampal pyramidal cells. Neuropsychopharmacology, 23, 419-427. http://dx.doi.org/10.1016/S0893-133X(00)00134-2 [ Links ]

    92. Murph, M.M., Nguyen, G.H., Radhakrishna, H. y Mills, G.B. (2008). Sharpening the edges of understanding the structure/function of the LPA1 receptor: expression in cancer and mechanisms of regulation. Biochimica et Biophysica Acta, 1781, 547-557. http://dx.doi.org/10.1016/j.bbalip.2008.04.007 [ Links ]

    93. Musazzi, L., Di Daniel, E., Maycox, P., Racagni, G. y Popoli, M. (2010). Abnormalities in α / β-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. International Journal of Neuropsychopharmacology, 14, 1-13. [ Links ]

    94. Nishikawa, T., Tomori, Y., Yamashita, S. y Shimizu, S. (1989). Inhibition of Na+,K+-ATPase activity by phospholipase A2 and several lysophospholipids: possible role of phospholipase A2 in noradrenaline release from cerebral cortical synaptosomes. Journal of Pharmacy and Pharmacology, 41, 450-458. http://dx.doi.org/10.1111/j.2042-7158.1989.tb06499.x [ Links ]

    95. Noguchi, K., Herr, D., Mutoh, T. y Chun, J. (2009). Lysophosphatidic acid (LPA) and its receptors. Current Opinion in Pharmacology, 9, 15-23. http://dx.doi.org/10.1016/j.coph.2008.11.010 [ Links ]

    96. Noorbala, A.A., Akhondzadeh, S., Davari-Ashtiani, R. y Amini-Nooshabedi, H. (1999). Piracetam in the treatment of schizophrenia: implications for the glutamate hypothesis of schizophrenia. Journal of Clinical Pharmacy and Therapeutics, 24, 369-374. http://dx.doi.org/10.1046/j.1365-2710.1999.00238.x [ Links ]

    97. Norman, R.M. y Malla, A.K. (1993). Stressful life events and schizophrenia. I: A review of the research. British Journal of Psychiatry, 162, 161-166. http://dx.doi.org/10.1192/bjp.162.2.161 [ Links ]

    98. Norton, N., Williams, H.J. y Owen, M.J. (2006). An update on the genetics of schizophrenia. Current Opinion in Psychiatry, 19, 158-164. http://dx.doi.org/10.1097/01.yco.0000214341.52249.59 [ Links ]

    99. Oades, R.D. (1981). Type of memory or attention? Impairments after lesions of the hippocampus and limbic ventral tegmentum. Brain Research Bulletin, 7, 221-226. http://dx.doi.org/10.1016/0361-9230(81)90086-1 [ Links ]

    100. Ohl, F., Roedel, A., Storch, C., Holsboer, F. y Landgraf, R. (2002). Cognitive performance in rats differing in their inborn anxiety. Behavioral Neuroscience, 116, 464-471. http://dx.doi.org/10.1037/0735-7044.116.3.464 [ Links ]

    101. Ohnuma, T., Augood, S.J., Arai, H., McKenna, P.J. y Emson, P.C. (1999). Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience, 93, 441-448. http://dx.doi.org/10.1016/S0306-4522(99)00189-X [ Links ]

    102. Parks, C.L., Robinson, P.S., Sibille, E., Shenk, T. y Toth, M. (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proceedings of the National Academy of Sciences USA, 95, 10734-10739. http://dx.doi.org/10.1073/pnas.95.18.10734 [ Links ]

    103. Perova, T., Wasserman, M.J., Li, P.P. y Warsh, J.J. (2008). Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. International Journal of Neuropsychopharmacoly, 11, 185-196. http://dx.doi.org/10.1017/S1461145707007973 [ Links ]

    104. Perova, T., Kwan, M., Li, P.P. y Warsh, J.J. (2010). Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. International Journal of Neuropsychopharmacology, 13, 693-702. http://dx.doi.org/10.1017/S1461145709000261 [ Links ]

    105. Pilpel, Y. y Segal, M. (2006). The role of LPA1 in formation of synapses among cultured hippocampal neurons. Journal of Neurochemistry, 97, 1379-1392. http://dx.doi.org/10.1111/j.1471-4159.2006.03825.x [ Links ]

    106. Pittenger, C. y Duman, R.S. (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology, 33, 88-109. http://dx.doi.org/10.1038/sj.npp.1301574 [ Links ]

    107. Pyka, M., Busse, C., Seidenbecher, C., Gundelfinger, E.D. y Faissner, A. (2011). Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse, 65, 41-53. http://dx.doi.org/10.1002/syn.20816 [ Links ]

    108. Quincozes-Santos, A., Abib, R.T., Leite, M.C., Bobermin, D., Bambini-Junior, V., Gonçalves, C.A., Riesgo, R. y Gottfried, C. (2008). Effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 astroglial lineage cells. Molecular and Cellular Biochemistry, 314, 59-63. http://dx.doi.org/10.1007/s11010-008-9765-x [ Links ]

    109. Ramos, A. y Mormede, P. (1998). Stress and emotionality: A multidimensional and genetic approach. Neuroscience & Biobehavioral Reviews, 22, 33-57. http://dx.doi.org/10.1016/S0149-7634(97)00001-8 [ Links ]

    110. Reif, A., Fritzen, S., Finger, M., Strobel, A., Lauer, M., Schmitt, A. y Lesch, K.P. (2006). Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Molecular Psychiatry, 11, 514-522. http://dx.doi.org/10.1038/sj.mp.4001791 [ Links ]

    111. Rivera, R. y Chun, J. (2008). Biological effects of lysophospholipids. Reviews of Physiology, Biochemistry & Pharmacology, 160, 25-46. http://dx.doi.org/10.1007/112_0507 [ Links ]

    112. Roberts, C., Winter, P., Shilliam, C.S., Hughes, Z.A., Langmead, C., Maycox, P.R. y Dawson, L.A. (2005). Neurochemical changes in LPA1 receptor deficient mice--a putative model of schizophrenia. Neurochemical Research, 30, 371-377. http://dx.doi.org/10.1007/s11064-005-2611-6 [ Links ]

    113. Ross, R.G., Stevens, K.E., Proctor, W.R., Leonard, S., Kisley, M.A., Hunter, S.K., Freedman, R. y Adams, C.E. (2010). Research review: Cholinergic mechanisms, early brain development, and risk for schizophrenia. Journal of Child Psychology and Psychiatry, 51, 535-549. http://dx.doi.org/10.1111/j.1469-7610.2009.02187.x [ Links ]

    114. Santín, L.J., Bilbao, A., Pedraza, C., Matas-Rico, E., Lopez-Barroso, D., Castilla-Ortega, E., Sánchez-López, J., Riquelme, R., Varela-Nieto, I., de la Villa, P., Suardíaz, M., Chun, J., De Fonseca, F.R. y Estivill-Torrús, G. (2009). Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain & Behavior, 8, 772-784. http://dx.doi.org/10.1111/j.1601-183X.2009.00524.x [ Links ]

    115. Savitz, J., Lucki, I. y Drevets, W.C. (2009). 5-HT(1A) receptor function in major depressive disorder. Progress in Neurobiology, 88, 17-31. http://dx.doi.org/10.1016/j.pneurobio.2009.01.009 [ Links ]

    116. Saxe, M.D., Malleret, G., Vronskaya, S., Mendez, I., Garcia, A.D., Sofroniew, M.V., et al. (2007). Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences USA, 104, 4642-4646. http://dx.doi.org/10.1073/pnas.0611718104 [ Links ]

    117. Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O.T. y Oitzl, M.S. (2011). Stress effects on memory: An update and integration. Neuroscience & Biobehavioral Reviews, (2011). http://dx.doi.org/10.1016/j.neubiorev.2011.07.002 [ Links ]

    118. Selemon, L.D. y Goldman-Rakic, P.S. (1999). The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biological Psychiatry, 45, 17-25. http://dx.doi.org/10.1016/S0006-3223(98)00281-9 [ Links ]

    119. Shors, T.J. (2004). Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends in Neurosciences, 27, 250-256. http://dx.doi.org/10.1016/j.tins.2004.03.007 [ Links ]

    120. Shors, T.J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T. y Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376. http://dx.doi.org/10.1038/35066584 [ Links ]

    121. Tabuchi, S., Kume, K., Aihara, M. y Shimizu, T. (2000). Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochemical Research, 25, 573-582. http://dx.doi.org/10.1023/A:1007542532395 [ Links ]

    122. Tamminga, C.A. y Holcomb, H.H. (2005). Phenotype of schizophrenia: a review and formulation. Molecular Psychiatry, 10, 27-39. http://dx.doi.org/10.1038/sj.mp.4001563 [ Links ]

    123. Tecott, L.H. (2007). Serotonin and the orchestration of energy balance. Cell Metabolism, 6, 352-361. http://dx.doi.org/10.1016/j.cmet.2007.09.012 [ Links ]

    124. Tigyi, G., Fischer, D.J., Sebok, A., Yang, C., Dyer, D.L. y Miledi, R. (1996). Lysophosphatidic acid-induced neurite retraction in PC12 cells: control by phosphoinositide-Ca2+ signaling and Rho. Journal of. Neurochemistry, 66, 537-548. http://dx.doi.org/10.1046/j.1471-4159.1996.66020537.x [ Links ]

    125. Tkachev, D., Mimmack, M.L., Ryan, M.M., Wayland, M., Freeman, T., Jones, P.B., Starkey, M., Webster, M.J., Yolken, R.H. y Bahn, S. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798-804. http://dx.doi.org/10.1016/S0140-6736(03)14289-4 [ Links ]

    126. Tyler, W.J., Alonso, M., Bramham, C.R. y Pozzo-Miller, L.D. (2002). From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learning and Memory, 9, 224-237. http://dx.doi.org/10.1101/lm.51202 [ Links ]

    127. Van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246-270. http://dx.doi.org/10.1093/schbul/sbp132 [ Links ]

    128. Van Haren, N.E., Hulshoff Pol, H.E., Schnack, H.G., Cahn, W., Brans, R., Carati, I., Rais, M. y Kahn, R.S. (2008). Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biological Psychiatry, 63, 106-113. http://dx.doi.org/10.1016/j.biopsych.2007.01.004 [ Links ]

    129. Van Meeteren, L.A. y Moolenaar, W.H. (2007). Regulation and biological activities of the autotaxin-LPA axis. Progress in Lipid Research, 46, 145-160. http://dx.doi.org/10.1016/j.plipres.2007.02.001 [ Links ]

    130. Van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D. y Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034. http://dx.doi.org/10.1038/4151030a [ Links ]

    131. Warner-Schmidt, J.L. y Duman, R.S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus, 16, 239-249. http://dx.doi.org/10.1002/hipo.20156 [ Links ]

    132. Weiger, W.A. (1997). Serotonergic modulation of behaviour: a phylogenetic overview. Biological Reviews, 72, 61-95 http://dx.doi.org/10.1017/S0006323196004975 [ Links ]

    133. Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660-669. [ Links ]

    134. Whishaw, I.Q. (1995). Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. Journal of Neuroscience, 15, 5779-5788. [ Links ]

    135. Whitford, T.J., Kubicki, M., Schneiderman, J.S., O'Donnell, L.J., King, R., Alvarado, J.L., Khan, U., Markant, D., Nestor, P.G., Niznikiewicz, M., McCarley, R.W., Westin, C.F. y Shenton, M.E. (2010). Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biological Psychiatry, 68, 70-77. http://dx.doi.org/10.1016/j.biopsych.2010.03.025 [ Links ]

    136. Wolff, A.L. y O'Driscoll, G.A. (1999). Motor deficits and schizophrenia: the evidence from neuroleptic-naive patients and populations at risk. Journal of Psychiatry & Neuroscience, 24, 304-314. [ Links ]

    137. Wright, I.C., Rabe-Hesketh, S., Woodruff, P.W., David, A.S., Murray, R.M. y Bullmore, E.T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157, 16-25. [ Links ]

    138. Yoon, T., Okada, J., Jung, M.W. y Kim, J.J. (2008). Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning and Memory, 15, 97-105. http://dx.doi.org/10.1101/lm.850808 [ Links ]

    139. Zhang, X.F., Schaefer, A.W., Burnette, D.T., Schoonderwoert, V.T. y Forscher, P. (2003). Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron, 40, 931-944. http://dx.doi.org/10.1016/S0896-6273(03)00754-2 [ Links ]