SciELO - Scientific Electronic Library Online

 
vol.27 issue2Importance of nutritional support in patients with hepatic encephalopathyEpidemiology and risk factors of eating disorder in adolescence: a review author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Nutrición Hospitalaria

On-line version ISSN 1699-5198Print version ISSN 0212-1611

Abstract

BORONI MOREIRA, A. P.  and  DE CASSIA GONCALVES ALFENAS, R.. The influence of endotoxemia on the molecular mechanisms of insulin resistance. Nutr. Hosp. [online]. 2012, vol.27, n.2, pp.382-390. ISSN 1699-5198.

Introduction: The reduction in the capacity of insulin to reach its biological effects can lead to a chronic hyperglycemia and hyperinsulinemia, assuming an important role in the pathogenesis of metabolic disorders associated to obesity and diabetes. Insulin resistance is associated to chronic subclinical inflammation, which in part can be mediated by increased plasmatic lipopolysaccharide levels, an endotoxin derived from the membrane of gramnegative bacteria that mainly reside in the gut. Objectives: The aim of this review study is to describe the molecular mechanisms involved in the pathogenesis of insulin resistance due to metabolic endotoxemia and of its connection to obesity and diabetes. Results and discussion: Lipopolysaccharide present in the intestinal lumen can reach the circulatory system causing metabolic endotoxemia. When lipopolysaccharide binds to Toll-like receptor 4, inflammation is activated, changing several stages of insulin signaling. It has been shown that chronic exposure to this endotoxin may contribute to weight gain and type 2 diabetes mellitus manifestation. Obese and diabetic people have increased plasmatic lipopolysaccharide levels. The increase in the number of gram-negative bacteria on gut microbiota, the reduction on gut mucosal integrity, and the consumption of high-fat diets increase the plasmatic lipopolysaccharide levels. Therefore, the type of diet consumed may modulate the composition of gut microbiota and improve gut mucosal integrity, decreasing the occurrence of endotoxemia and its postprandial inflammatory effects, leading to adequate insulin signaling. However, there are very few studies that evaluated the influence of nutrients and/or specific food types on metabolic endotoxemia.

Keywords : Gut microbiota; Lipopolysaccharide; Endotoxemia; Inflammation; Insulin resistance.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License