Introducción
La variación global del clima de la Tierra recibe el nombre de cambio climático, el cual se produce en diversas escalas de tiempo y en cualquier parámetro meteorológico (temperatura, precipitaciones, nubosidad, etc.), siendo consecuencia de nuestro modo de producción y consumo energético. El dióxido de carbono es el actor principal de este fenómeno, su concentración atmosférica se ha duplicado prácticamente desde la era preindustrial hasta la actualidad. La temperatura ha aumentado aproximadamente 0,7°C en el siglo XX, siendo mayor el ritmo de aumento en los últimos 50 años (fig. 1)1. De hecho, 11 de los últimos 12 años han sido los más calurosos que se tienen registrados desde 1850. Por su situación geográfica, España es muy vulnerable al cambio climático; de hecho, se espera que en el último tercio de siglo la temperatura estival sea 5-7°C superior. Así, el impacto potencial del cambio climático es enorme, con predicciones de falta de agua potable, dificultades para la producción de alimentos y aumento de los índices de mortalidad debido a inundaciones, sequías, olas de calor, etc. En definitiva, no es un fenómeno solo ambiental, sino de profundas consecuencias económicas y sociosanitarias2.
Ha quedado demostrado en numerosos estudios como las modificaciones bruscas de temperatura, ya sean olas de frío o de calor, tienen un efecto directo sobre el número de ingresos hospitalarios y la morbimortalidad3-10. En Estados Unidos 650 personas mueren anualmente debido a olas de calor, siendo este el fenómeno climatológico más letal y apareciendo cada vez con más frecuencia. Estos periodos de temperaturas cálidas extremas pueden inducir la aparición de situaciones de riesgo vital como la hipertermia y el golpe de calor.
Es fácil imaginar cómo en periodos de altas temperaturas y humedad variable, la sudoración junto con la falta de ingesta de agua libre o, por el contrario, el exceso de la misma, puede ocasionar disbalances electrolíticos que son predictores independientes de mortalidad11-13. Pero además, los mecanismos fisiológicos compensatorios, como la adaptación circulatoria y la termorregulación, pueden comprometer la función renal. Varios estudios han demostrado la relación entre alta temperatura ambiental y aumento del número de ingresos por fracaso renal5,14-17. Durante la ola de calor que asoló Europa en agosto de 2003 murieron más de 70.000 personas en todo el continente (6.500 en España), siendo Francia el país más afectado, con 14.729 fallecimientos18, gran parte de ellos ancianos deshidratados con fracaso renal19-21.
Los grupos de riesgo para padecer enfermedad asociada a calor son niños, ancianos, enfermos crónicos (enfermedades cardiaca, respiratoria, renal y diabéticos), personas encamadas, discapacitados, personas que viven solas o con escaso contacto social14 y las poblaciones más deprimidas y desfavorecidas a nivel socioeconómico. Aunque a priori la población joven es un grupo de bajo riesgo, el mayor tiempo de actividad al aire libre por motivo laboral o de recreo les confiere una mayor susceptibilidad, según diferentes estudios18,22-27.
Enfermedad por calor
La enfermedad por calor es una entidad que puede manifestarse, bien a través de formas leves (quemadura, milaria rubra, edema, síncope, calambre), bien como formas graves y potencialmente letales, como el agotamiento y el golpe de calor, que son el fruto del fracaso de los mecanismos fisiológicos de termorregulación (tabla 1). Respecto a estos sabemos que la piel es el medio principal para la termorregulación a través de la pérdida de calor mediante conducción (transmisión de calor de un objeto a otro por contacto directo), radiación (emisión de radiación infrarroja), evaporación y convección (transferencia de calor por movimiento de una sustancia al paso y contacto con otra de mayor temperatura). Para una mayor efectividad, las glándulas sudoríparas excretan una solución salada con alto punto de ebullición que mejora la transferencia de calor con su evaporación. Además, se produce una vasodilatación periférica que implica un aumento del gasto cardiaco para llevar mayor flujo hacia la piel, reduciendo la temperatura sanguínea antes de volver a la circulación central28.
Agotamiento y golpe de calor son las formas más graves de esta entidad. En el primer caso, la temperatura central no se eleva nunca por encima de 40°C y el estado mental permanece inalterado. La clínica es variable: taquipnea, taquicardia, náuseas, vómitos, sudoración, mialgias, enrojecimiento, cefalea, etc.29,30. En el golpe de calor la temperatura central sube hasta 41,5-42°C, generando daño celular cuya clínica es debida al síndrome de respuesta inflamatoria sistémica que desencadena, y a la coagulación intravascular diseminada por activación de la cascada de coagulación. La afectación principal es hepática y del sistema nervioso central, apareciendo vértigo, confusión, ataxia y coma. Además, la disminución del flujo renal y esplácnico producida para conseguir un mayor aporte sanguíneo a piel deteriora el filtrado glomerular y la ya maltrecha función hepática, pudiendo aparecer también isquemia intestinal y miocárdica31. El pronóstico depende de factores como comorbilidad, existencia de lesión orgánica (convulsiones, fracaso renal, coagulopatía, hipertransaminasemia) y respuesta al tratamiento con recuperación del estatus mental por debajo de 40°C.
Altas temperaturas y función renal
Implicaciones sobre fracaso renal agudo
Varios estudios han demostrado la relación causal entre agotamiento/golpe de calor y fracaso renal16,17,19,32, pudiendo intervenir diferentes mecanismos como deshidratación o rabdomiolisis. La población anciana es la más vulnerable, dada su menor termotolerancia, sensación de sed alterada, disminución del filtrado glomerular y reducción de la reabsorción tubular de agua y sodio durante la deshidratación19,21. Además, el paciente anciano está con mucha frecuencia polimedicado, existiendo fármacos que incrementan el riesgo de padecer enfermedad por calor por su acción inhibitoria sobre la termorregulación: neurolépticos, ansiolíticos, antidepresivos, anticolinérgicos, barbitúricos, antihipertensivos (betabloqueantes, diuréticos), antihistamínicos17,19,21.
Hansen et al.7 publicaron en 2008 un estudio retrospectivo en el que estudiaron la exposición a altas temperaturas y su relación con morbilidad renal durante un periodo de 12 años en una población de 1,15 millones de habitantes. Se definió ola de calor como la existencia de temperaturas superiores a 35°C durante más de 3 días, recogiendo al final del periodo un total de 31 episodios con una duración media de 3,8 días, demostrando un aumento de los ingresos de causa renal del 10%. Se obtuvieron diferencias significativas en la población de 15-64 años en cuanto al riesgo relativo (RR) de ingreso por causa renal (1,13) y RR de ingreso por FRA (1,78), resultando también significativo el RR de ingreso por causa renal en mujeres mayores de 85 años (1,22). No hubo diferencias en la incidencia de diálisis agudas. Resultados similares se obtuvieron en estudios parecidos durante las olas de calor de Chicago (1995) y California (2006), entre otros4,14,22,23, discrepando únicamente en la susceptibilidad del paciente diabético a presentar eventos de este tipo, que Hansen et al. no pudieron demostrar. Un estudio llevado a cabo durante la ola de calor que sufrió Francia en 2006 encontró un mayor número de visitas a Urgencias y de hospitalizaciones de causa renal: fundamentalmente FRA, enfermedad renal crónica (ERC) reagudizada y cólico renoureteral, resultando significativa la incidencia de FRA y cólico renoureteral en menores de 75 años9.
A finales de 2014 Gronlund et al.3 publican datos recogidos entre 1992-2006 en 114 ciudades estadounidenses y sus conclusiones sobre la repercusión del calor moderado (temperatura mayor/igual a percentil 90), extremo (mayor/igual a percentil 99) y ola de calor (temperatura mayor/igual percentil 95, mantenida durante al menos 2 días) en mayores de 65 años. Así, obtuvieron un aumento del número de ingresos de causa renal del 4,3, 14,2 y 23,2%, respectivamente.
Más allá de las olas de calor, Fletcher et al.8 estudiaron la asociación de la temperatura durante el verano con los ingresos por causa renal en el estado de Nueva York durante los meses de julio y agosto entre 1991 y 2004. Encontraron un aumento de la odds ratio de hospitalización por FRA del 9% por cada 2,78°C sobre la temperatura ambiental media, con una mayor susceptibilidad entre los 24-44 años. También se objetivó una odds ratio aumentada para ingresos por cólico renoureteral e infecciones urinarias probablemente asociadas a deshidratación. En contraposición a los resultados anteriores, el estudio inglés realizado en el distrito de Gran Londres durante los veranos de 1994-2000 solo encontró diferencias en el número de visitas a Urgencias y los ingresos de causa renal en menores de 5 años, pudiendo estar relacionado con las menores temperaturas máximas en esta región durante el verano (18,2°C de media, 26,7°C percentil 95)5 (tabla 2).
FRA: fracaso renal agudo; IC 95%: intervalo de confianza del 95%; N: nefritis; Pob: población en millones de personas; SN: síndrome nefrótico; RR: riesgo relativo.
Se muestran los estudios sobre altas temperaturas y olas de calor en cuyos resultados se recogen datos sobre morbilidad renal, si bien solo hay 2 estudios cuyo objetivo único era este.
aComparado con periodo 2000-2002.
bTemperatura por encima de P95: temperatura máxima y mínima por encima del percentil 95 de las temperaturas nacionales.
cEl objetivo del estudio fue únicamente la repercusión sobre la morbilidad renal.
dEl RR fue mayor en varones; entre ellos, los de mayor riesgo fueron aquellos entre 15-65 años. Por edades, fueron los mayores de 65 años el grupo de mayor RR.
eCalor moderado: temperatura por encima de percentil 90; calor extremo: temperatura por encima de percentil 99; ola de calor: temperatura superior al percentil 99 durante al menos 48h.
Con estos datos intuimos que pueden existir variaciones estacionales del filtrado glomerular que en ocasiones conllevan la necesidad de ingreso hospitalario, si bien son muy pocas las publicaciones que han estudiado este fenómeno y con resultados en cierto modo discutibles. Masugata et al.33 comparan la variación de filtrado glomerular estimado (FGe) en 102 pacientes hipertensos con ERC (no diálisis) y sin ella. En ambos grupos el FGe fue más bajo en verano, con un descenso respecto a la primavera que fue mayor en el grupo con ERC (−13,8 ± 9,4 vs. −7,7 ± 8,3%; p = 0,001). Se observó además una diferencia significativa en mayores de 73 años (−12,2 ± 9,8 vs. −7,2 ± 6%; p = 0,002) y entre aquellos tratados con combinaciones de inhibidores del sistema renina-angiotensina con diurético (−14 ± 11 vs. −8,4 ± 7,1%; p = 0,004). En los pacientes con ERC la presión sistólica resultó significativamente menor en verano y no hubo diferencias en cuanto a la creatinina plasmática entre ambos grupos. Es fácil suponer que la causa de este descenso de FGe pudiera ser la deshidratación. Esta variación estacional se ha demostrado también en pacientes sometidos a cirugía cardiaca. En 2014 Ranucci et al. publican los resultados de 16.023 pacientes sometidos a cirugía cardiaca en los que se estudió la variación de la función renal según la temperatura ambiental (excluidos los pacientes en diálisis). Los pacientes operados entre mayo y octubre tenían una creatinina basal y un pico de creatinina postoperatorio significativamente mayores, diferencia más evidente en los meses de julio y agosto. Sin embargo, la diferencia en la incidencia de FRA (según AKIN) no fue significativa. A mayor temperatura, humedad y velocidad del viento menor fue el FGe, quizá por generar un mayor grado de deshidratación. La mortalidad resultó mayor en el mes de agosto (5,1 vs. 3,5%; p = 0,018) y entre los pacientes con FRA 27,2 vs. 2,4%, con RR 15,1 (12,5-18,3; p < 0,001)34. Los autores subrayan la relación significativa del FRA con la fracción de eyección, la realización de by-pass y la cirugía no electiva; no así con la presencia de diabetes, el uso de balón de contrapulsación y la anemización. Aunque estos estudios carecen de un diseño y unas conclusiones adecuadas, siendo una limitación importante la utilización del FGe como medida de función renal, sobre todo en pacientes sin ERC, pudieran estar en la línea de lo que se apuntaba en apartados previos de esta revisión. Quizá hagan falta estudios bien planteados y estructurados que analicen este fenómeno identificando la población en riesgo y sus factores concomitantes para prevenir fracasos renales e ingresos, con las implicaciones que ello conlleva, en estaciones y climas cálidos, así como durante olas de calor.
Junto con las altas temperaturas, las precipitaciones también tienen su implicación sobre la incidencia de FRA. Las temperaturas continentales cada vez más altas atraen mayor aire húmedo del océano generando mayor condensación y, por lo tanto, precipitaciones. En Europa se está dando una disminución de estas en las regiones meridionales, aumentando en las septentrionales, lo que hace cada vez más frecuente las inundaciones fluviales con consecuencias sociosanitarias mayores en los países menos desarrollados de la zona y en clases más desfavorecidas. Esto llega a su máximo exponente en Asia, ya que el calentamiento global produce un aumento enorme de la variabilidad diaria de las precipitaciones en época de monzón (junio-septiembre), generando también un mayor número de inundaciones. Debido a esto, en el Sudeste Asiático la incidencia de FRA aumenta entre 18-24% en esta época como consecuencia de la aparición de nuevos casos de malaria, leptospirosis, gastroenteritis y disentería. Se intuyen las consecuencias sobre la mortalidad que esta situación implica debido a la falta de acceso al sistema sanitario y la precariedad de este en muchas ocasiones. Un caso dramático es el de la malaria, cuya incidencia está aumentando en África, India, Tailandia y Nueva Guinea, siendo letal en el 45% de los casos asociados a FRA35.
Implicaciones sobre enfermedad renal crónica
Las principales causas de ERC son bien conocidas (diabetes, obesidad, hipertensión, etc.); sin embargo, hay poblaciones con una alta prevalencia de enfermedad renal (casi epidémica) que no encajan en esta casuística. Se trata de zonas de Centroamérica (Guatemala, Nicaragua, El Salvador) y Asia (Sri Lanka, Tailandia), fundamentalmente trabajadores de recolección de caña de azúcar y arroz que sufren altas temperaturas. Son pacientes con mínima proteinuria en ausencia de un sedimento activo, con biopsias en las que se objetiva fibrosis tubulointersticial y glomeruloesclerosis36. Esta llamada nefropatía mesoamericana se ha intentado poner en relación con toxinas, pesticidas, sílice y metales pesados sin encontrar una clara asociación, si bien parece haber evidencias del papel que puede jugar la deshidratación recurrente en esta entidad. El daño renal parece consecuencia del aumento recurrente en la osmolaridad sérica, que desencadena la liberación de vasopresina y la activación de la vía de los polioles. La vasopresina ejerce su efecto nocivo debido al cambio hemodinámico que genera y al estrés oxidativo sobre la mitocondria. Además, la vía de los polioles aumenta la producción de fructosa que es metabolizada en el túbulo proximal, realimentando el estrés oxidativo y produciendo una mayor inflamación. Así, terminan generándose inflamación crónica y fibrosis tanto tubulointersticial como glomerular (fig. 2). Es interesante cómo la frecuente rehidratación de estos trabajadores con bebidas azucaradas no hace sino empeorar la situación, añadiendo fructosa como sustrato clave del daño37-40.
Alteraciones electrolíticas asociadas a altas temperaturas
La relación teórica entre altas temperaturas y disnatremias parece clara: aumento de sudoración y pérdida de fluidos hipotónicos asociada a situaciones de sensación de sed alterada y/o imposibilidad para acceder al agua; o bien, sudoración profusa junto con excesiva reposición con soluciones hipotónicas. Tanto la hiper como la hiponatremia implican una mayor mortalidad, sobre todo en presencia de cambios rápidos de agua intracelular en el sistema nervioso central. En cuanto a las alteraciones del potasio, más allá del hiperaldosteronismo secundario a la depleción de volumen por sudoración, varios estudios experimentales han demostrado un aumento de actividad de la bomba Na/K-ATPasa con la temperatura ambiental. De esta manera, a mayor temperatura, mayor captación de potasio por la célula y menor kalemia41.
La aclimatación es un aspecto importante en términos de alteraciones electrolíticas. Se ha visto como los individuos con mayor capacidad/rapidez de aclimatación tienen una menor concentración de sodio en el sudor ya desde el segundo día de exposición a altas temperaturas debido a una mayor sensibilidad de las glándulas sudoríparas a la aldosterona. Por lo tanto, en la capacidad de aclimatación participan factores inherentes como la densidad y la sensibilidad de las glándulas sudoríparas, además de las modificaciones en el estilo de vida42.
La evidencia en la bibliografía sobre las alteraciones electrolíticas asociadas al clima es escasa y contradictoria. Pfortmueller et al.43 publicaron a principios de 2014 un estudio sobre alteraciones electrolíticas en periodos de calor, recogiendo retrospectivamente las determinaciones analíticas de 22.239 pacientes (edad media 53 años) que acudieron al servicio de Urgencias entre los años 2009-2010 en Berna (Suiza). La incidencia de hipokalemia fue del 11,1%, de hiperkalemia, del 4%, de hiponatremia, del 8,9%, y de hipernatremia, del 1,5%. Cabe destacar de la población estudiada que el 11% tomaba diuréticos y el 9,6% tenía ERC. Se observó una débil correlación inversa entre la temperatura máxima diaria y las cifras de sodio (R = −0,04, p < 0,05) y potasio (R = −0,03, p < 0,05). Teniendo en cuenta que solo durante 88 días la temperatura excedió los 25°C y en 16 fue superior a 30°C, el único resultado significativo fue la mayor prevalencia de hiponatremia (11 vs. 9%, p = 0,04) en los periodos de temperatura por encima de 30°C. Hipo e hipernatremia, edad mayor de 80 años e ingreso con temperatura superior a 30°C resultaron predictores independientes de mortalidad. Zhao et al.44 concluyen en su estudio retrospectivo de un periodo de 10 años sobre los ingresos en 12 hospitales chinos que los niveles de sodio fueron significativamente más bajos en el mes de agosto respecto al resto del año (134,2 vs. 140,1 mmol/l; p < 0,05) y fueron un factor de riesgo independiente de ingreso. No hubo diferencias en las cifras de potasio. La variación de la natremia según temperatura y humedad fue calculada por Bucher et al.45 de manera retrospectiva en una cohorte de 13.277 pacientes, mostrando aumentos de 0,017 mmol/l por cada 1% de humedad por encima de la media (p < 0,0001) y 0,033 mmol/l por cada grado de temperatura sobre la media. Aunque otros autores sustentan estas variaciones electrolíticas asociadas a altas temperaturas, no en todos los casos se ha llegado a demostrar que esto sea así46,47. En el caso concreto de 201 pacientes con diagnóstico de hiponatremia asociada a tiazidas, no hubo una mayor incidencia en verano; de hecho, la natremia resultó significativamente más alta en dicha estación (118 ± 7 vs. 114 ± 8 mmol/l, p = 0,016)48.
No hay estudios sobre las alteraciones electrolíticas de los pacientes sometidos a diálisis en periodos de calor. Como parece ocurrir con el FGe, algunos autores describen cierta variación estacional de las diselectrolitemias, aunque no todos apuntan en la misma dirección. Mientras que algunos objetivan mayores cifras de potasio en invierno en relación con una mayor ingesta alimentaria en los meses de frío, otros obtienen resultados opuestos justificando un mayor consumo de fruta en verano49. Solo hay una referencia sobre este fenómeno en la literatura en pacientes en diálisis peritoneal. En un grupo de 44 pacientes anúricos prevalentes en diálisis peritoneal se determinó la existencia de una relación inversa significativa entre temperatura y niveles plasmáticos de sodio, potasio, bicarbonato, albúmina, BUN, volumen de ultrafiltrado y peso seco después de un periodo de estudio de 2 años, achancando estos cambios a la sudoración por calor50.
Calentamiento global y morbimortalidad
Más allá de la enfermedad renal ya comentada en apartados anteriores, durante las olas de calor se ha descrito un aumento de los ingresos de origen cardiovascular y respiratorio que varía entre 1-10% según distintos autores3,5. Sin embargo, Turner et al.51 no encontraron dicha asociación en su metaanálisis, si bien es cierto que los resultados estuvieron muy cerca de la significación.
Durante la ola de calor de Chicago en 1995, la mortalidad por cualquier causa en la población general aumentó un 147%, mientras que el número de ingresos solo lo hizo un 11%. Esta desproporción se debió al aumento de muertes repentinas, fundamentalmente entre personas que vivían solas o carecían de apoyo social/familiar52. En otras cohortes se ha visto como la mortalidad de origen cardiovascular y respiratorio aumenta del orden del 5-6%, afectando fundamentalmente a los mayores de 75 años3. En Australia, en el periodo 1968-2006, la ratio verano/invierno de mortalidad por cualquier causa pasó de 71/100 a 86/100, y sigue aumentando con tendencia a invertirse según aumenta la temperatura media y la frecuencia de olas de calor6.
Aunque parece obvio que exista una mayor morbimortalidad en relación con el calor en pacientes con ERC, no hay datos en la bibliografía que lo sustenten. En el caso de pacientes en diálisis, los resultados del registro MONDO (87.399 pacientes con ERC terminal en diálisis de distintas zonas climáticas del mundo) muestran una variabilidad estacional de la mortalidad, siendo mayor en invierno10.
Conclusiones
Las temperaturas medias suben y las olas de calor aumentan su frecuencia e intensidad con repercusión directa sobre la mortalidad y el gasto sociosanitario. Son escasos los estudios que analizan la implicación de estos cambios sobre la función renal y las diselectrolitemias, siendo sus resultados controvertidos y discordantes probablemente debido a la falta de un diseño y objetivos adecuados. La incidencia de FRA parece aumentar durante estos periodos, afectando de manera más importante a población deprimida y a zonas desfavorecidas con escasos recursos sanitarios. Además, se empiezan a estudiar modelos de causalidad de la temperatura en la ERC, definiendo nuevos grupos de riesgo más allá de los clásicamente conocidos.
Necesitamos planes de salud pública basados en sistemas de alerta temprana que permitan la identificación y la previsión de situaciones de riesgo, así como desarrollar programas de vigilancia y control de población susceptible. Precisamos una mayor concienciación de los ciudadanos, los políticos y los profesionales de la salud para promover medidas de adaptación y mitigación del cambio climático, hecho que pasa necesariamente por fomentar la investigación y el desarrollo tecnológico.