SciELO - Scientific Electronic Library Online

 
vol.35 número3Elección de tratamiento conservador en la enfermedad renal crónicaCumplimiento de las guías y factores predictivos de la mortalidad en la hemodiálisis: enseñanzas de la experiencia en pacientes de Serbia índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Nefrología (Madrid)

versión On-line ISSN 1989-2284versión impresa ISSN 0211-6995

Resumen

MADUELL, Francisco et al. Assessment of dialyzer surface in online hemodiafiltration: objective choice of dialyzer surface area. Nefrología (Madr.) [online]. 2015, vol.35, n.3, pp.280-286. ISSN 1989-2284.  https://dx.doi.org/10.1016/j.nefro.2015.05.003.

Introduction: Online hemodiafiltration (OL-HDF) is currently the most effective technique. Several randomized studies and meta-analyses have observed a reduction in mortality as well as a direct association with convective volume. Currently, it has not been well established whether a larger dialyzer surface area could provide better results in terms of convective and depurative effectiveness. The aim of this study was to assess the effect of larger dialyzer surface areas on convective volume and filtration capacity. Material and methods: A total of 37 patients were studied, including 31 men and 6 women, who were in the OL-HDF program using a 5008 Cordiax monitor with auto-substitution. Each patient was analyzed in 3 sessions in which only the dialyzer surface area varied (1.0, 1.4 or 1.8 m2). The concentrations of urea (60 Da), creatinine (113 Da), β2-microglobulin (11800 Da), myoglobin (17200 Da) and α1-microglobulin (33000 Da) were determined in serum at the beginning and end of each session in order to calculate the percent reduction of these solutes. Results: The convective volume reached was 29.8 ± 3.0 with 1.0 m2, 32.7 ± 3.1 (an increase of 6%) with 1.4 m2, and 34.7 ± 3.3 L (an increase of 16%) with 1.8 m2 (p<.001). The increased surface of the dialyzer showed an increase in the dialysis dose as well as urea and creatinine filtration. The percentage of β2m reduction increased from 80.0 ± 5.6 with 1.0 m2 to 83.2 ± 4.2 with 1.4 m2 and to 84.3 ± 4.0% with 1.8 m2. As for myoglobin and a1-microglobulin, significant differences were observed between smaller surface area (1.0 m2) 65.6 ± 11 and 20.1 ± 9.3 and the other two surface areas, which were 70.0 ± 8.1 and 24.1 ± 7.1 (1.4 m2) and 72.3 ± 8.7 and 28.6 ± 12 (1.8 m2). Conclusion: The 40% and 80% increases in surface area led to increased convective volumes of 6 and 16% respectively, while showing minimal differences in both the convective volume as well as the filtration capacity when the CUF was higher than 45 ml/h/mmHg. It is recommended to optimize the performance of dialyzers with the minimal surface area possible when adjusting the treatment prescription.

Palabras clave : Autosubstitution; Online hemodiafiltration (OL-HDF); Membrane surface; Convective volume.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons