SciELO - Scientific Electronic Library Online

 
vol.41 número especial 3Patrones dietéticos asociados a la obesidad y a sus comorbilidadesLa obesidad y su relación con el cáncer índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Nutrición Hospitalaria

versión On-line ISSN 1699-5198versión impresa ISSN 0212-1611

Nutr. Hosp. vol.41 spe 3 Madrid sep. 2024  Epub 08-Nov-2024

https://dx.doi.org/10.20960/nh.05458 

REVIEWS

Impact of nutrition on hearing loss

Impacto de la nutrición en la pérdida auditiva

Julia Almazán-Catalán1  , Carmen Morais-Moreno1  , Ana M Puga1  2  , Teresa Partearroyo1  2 

1Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720. Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad San Pablo-CEU. Boadilla del Monte. Madrid, Spain

2Instituto CEU Alimentación y Sociedad. Facultad de Farmacia. Universidad San Pablo-CEU. Boadilla del Monte. Madrid, Spain

Abstract

The incidence of hearing disorders is rising at an alarming rate, aggravated by increasing longevity, without sufficient social awareness and attention from public health officials. The etiology of hearing loss (HL) is multifactorial, including both genetic and environmental factors, such as noise, ototoxic drugs, and nutritional status. Therefore, it is necessary to expand knowledge about the relationship between the different factors involved as a first step towards prevention and potential repair of hearing damage before it becomes irreversible and significantly limits the quality of life. Our recent studies have demonstrated the interrelationship between nutrition and HL highlighting the strong need to implement prevention and nutritional intervention strategies aimed at promoting hearing health from the earliest stages of life.

Keywords: Hearing loss; Auditory function; Nutrition; Folic acid; Homocysteine

Resumen

La incidencia de los trastornos auditivos está aumentando de forma alarmante, especialmente agravada por el aumento de la longevidad, sin que exista la suficiente conciencia social y atención por parte de los responsables de salud pública. La etiología de la pérdida auditiva es multifactorial: intervienen factores genéticos y ambientales, como el ruido, las sustancias ototóxicas y el estado nutricional. Por ello, es necesario ampliar el conocimiento acerca de la relación existente entre los diferentes factores como primer paso para la prevención y potencial reparación del daño auditivo antes de que llegue a ser irreversible y límite de manera significativa la calidad de vida en el adulto mayor. Nuestros recientes estudios han demostrado una interrelación entre la pérdida auditiva y la nutrición que pone de manifiesto la necesidad de implementar estrategias de prevención y de intervención nutricional dirigidas a promover la salud auditiva desde las primeras etapas de la vida.

Palabras clave: Pérdida auditiva; Función auditiva; Nutrición; Ácido fólico; Homocisteína

INTRODUCTION

Hearing loss (HL) is a public health problem that deserves global recognition and prioritization, as it clearly affects the quality of life, reduces labor productivity, and significantly increases the risk of dependency. The most recent Global Burden of Disease report (2019) indicated that 1.57 billion people, or 20.3 % of the world population, are affected by any kind of HL. This percentage rises to 62 % for people aged 50 and over (1).

Specifically, HL is a sensory impairment with multifactorial etiology (2,3). Genetic factors include mutations in genes or regulatory elements involved in the development, structure, and/or function of the ear, whereas environmental factors include noise exposure, ototoxic drug consumption, and/or nutritional deficiencies (4). In most cases, HL is potentially preventable and treatable, so making its prevention and early detection crucial, as it has been associated with numerous adverse physical and mental health outcomes. In fact, the World Health Organization (WHO) has recently called for urgent actions to address the needs of people with ear diseases and HL, in vulnerable population groups, including the 1.1 billion adolescents and young adults at risk of HL due to prolonged exposure to loud music (5).

Noise-induced HL (NIHL) is the second most common cause of HL after presbycusis (age-related HL), being the result of multifactorial damage to auditory structures following exposure to loud noise sources at work, in the environment or during leisure activities (6). Globally, NIHL is estimated to affect approximately 5 % of the population and is generally more common among adult men (7). Conversely, this data might be underestimated, as the prevalence of NIHL varies widely between populations and age-groups. Moreover, although NIHL is frequently irreversible, it is a largely preventable condition if appropriate precautions are taken. Interestingly, preventive measures seem to be effective in reducing the incidence of HL as a result of noise exposure (8,9). In this context of concern about the influence of noise exposure on health, it is important to point out the role of nutrition as a modifiable risk factor for HL (4,10). Therefore, there is an urgent need to deeply characterize the dietary impact on the management of NIHL in young adults, to potentially establish precision nutritional intervention strategies aimed at preventing and/or repairing hearing damage before it becomes irreversible.

In this regard, for example, some studies have demonstrated the role of certain specific nutrients in HL, with high intakes of saturated fats (11), simple carbohydrates (sugars) and certain minerals (4) being associated with HL. In addition, recent studies have linked vitamin D deficiency to several cardiovascular risk factors, that appear to be related to increased mortality and incidence of cardiovascular diseases, due to the role of vitamin D in blood pressure regulation by its action on endothelial cells (12,13). Moreover, recent studies also seem to associate vitamin D status with HL in the elderly (14) and with several HL disorders (15-17). To date, to the best of our knowledge, the mechanism involved is unclear, but it appears to be related to the key role of this vitamin in inflammation, regulating the expression of pro-inflammatory mediators (18).

Furthermore, insufficient folic acid (FA) levels have been correlated with HL onset when combined with low vitamin B12 concentrations or hyperhomocysteinemia (HHcy) (19-23). In this line, other studies have provided evidence of the potential protective effect of dietary supplementation with FA against HL (17). These B vitamins are directly or indirectly involved in homocysteine (Hcy) metabolism, which comprises the methionine and folate cycles, and the transsulfuration pathway. Hcy thus emerges as a hub of key pathways of the intermediary metabolism that has been mainly studied in the liver of experimental models (24). Interestingly, the cochlea is one of the few sensory organs in which the whole expression and protein profile of the methionine cycle and transsulfuration pathway has been reported (25). The proper functioning of these pathways depends on a continuous supply of key nutrients (methionine, vitamins B12, B6, and folate), whereas their insufficient consumption impairs the flux through these pathways and, in turn, the synthesis of key compounds for cell function (e.g. phospholipids, neurotransmitters, etc.) and important regulatory mechanisms (e.g. epigenetic methylations).

Based on the studies on HL, several supplementation studies carried out in humans have attempted to reduce systemic Hcy levels (26,27). In addition, two studies from our research group using mouse models have identified a relationship between Hcy metabolism, HL, and FA deficiency (25,28). For example, we have demonstrated that FA deficiency induces premature HL in animals from different genotypes, leading to alterations of the cochlear structure that correlate with changes in cochlear Hcy metabolism, associated with oxidative stress and increased levels of protein homocysteinylation (25). Furthermore, we have demonstrated in aviation pilots (exposed to noise pollution at their workplace) high prevalence of HL, which increased with age and flight hours at higher frequencies. These results showed a clear association between HL and flight hours, serum folate, and serum Hcy levels (29).

CONCLUSIONS

The high prevalence and incidence of HL, together with the lack of an effective treatment, as well as the associated co-morbidities makes the management of this condition one of the greatest global challenges of the 21st century. This is especially crucial in vulnerable population groups such as, young adults and adolescents exposed to loud music sources. In this context of concern, it is important to point out the role of nutrition as a modifiable risk factor for HL. Therefore, there is an urgent need to characterize not only nutrients´ effect on the auditory function but also the dietary impact on the management of HL in order to potentially establish precision nutritional intervention strategies aimed at preventing and/or repairing hearing damage before it becomes irreversible.

REFERENCES

1. GBD 2019 Hearing Loss Collaborators. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019. Lancet 2021;397(10278):996-1009. DOI: 10.1016/S0140-6736(21)00516-X [ Links ]

2. Dror AA, Avraham KB. Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet 2009;43:411-37. DOI: 10.1146/annurev-genet-102108-134135 [ Links ]

3. Roth TN, Hanebuth D, Probst R. Prevalence of age-related hearing loss in Europe: a review. Eur Arch Otorhinolaryngol 2011;268(8):1101-07. DOI: 10.1007/s00405-011-1597-8 [ Links ]

4. Puga AM, Pajares MA, Varela-Moreiras G, Partearroyo T. Interplay between Nutrition and Hearing Loss: State of Art. Nutrients 2018;11(1):35. DOI: 10.3390/nu11010035 [ Links ]

5. Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021. Bull World Health Organ 2021;99(4):242-242A. DOI: 10.2471/BLT.21.285643 [ Links ]

6. Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023;12(6):2347. DOI: 10.3390/jcm12062347 [ Links ]

7. Oishi N, Schacht J. Emerging treatments for noise-induced hearing loss. Expert Opin Emerg Drugs. 2011;16(2):235-45 [ Links ]

8. Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M. The global burden of occupational noise-induced hearing loss. Am J Ind Med 2005;48(6):446-58. DOI: 10.1002/ajim.20223 [ Links ]

9. Lie A, Skogstad M, Johannessen HA, Tynes T, Mehlum IS, Nordby KC et al. Occupational noise exposure and hearing: a systematic review. Int Arch Occup Environ Health 2016;89(3):351-72. DOI: 10.1007/s00420-015-1083-5 [ Links ]

10. Abbasi M, Pourrajab B, Tokhi MO. Protective effects of vitamins/ antioxidants on occupational noise-induced hearing loss: A systematic review. J Occup Health 2021;63(1):e12217. [ Links ]

11. Yévenes-Briones H, Félix Caballero F, Struijk EA, Lana A, Rodríguez-Artalejo F, Lopez-García E. Dietary fat intake and risk of disabling hearing impairment: a prospective population-based cohort study. Eur J Nutr 2022;61(1):231-42. DOI: 10.1007/s00394-021-02644-7 [ Links ]

12. De la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, SanchÍs-Gomar F, Pareja-Galean H. Vitamin D and cardiovascular health. Clin Nutr 2021;40(5):2946-57. DOI: 10.1016/j.clnu.2020.12.025 [ Links ]

13. Kheiri B, Abdalla A, Osman M, Ahmed S, Hassan M, Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens 2018;24:9. DOI: 10.1186/s40885-018-0094-4 [ Links ]

14. Szeto B, Valentini C, Lalwani AK. Low vitamin D status is associated with hearing loss in the elderly: a cross-sectional study. Am J Clin Nutr 2021;113(2):456-66. [ Links ]

15. Ghazavi H, Kargoshaie AA, Jamshidi-Koohsari M. Investigation of vitamin D levels in patients with Sudden Sensory-Neural Hearing Loss and its effect on treatment. Am J Otolaryngol 2020;41(2):102327. [ Links ]

16. Paprocki J, Sutkowy P, Piechocki J, Woźniak A. Association between Vitamin D Supplements, Oxidative Stress Biomarkers, and Hyperbaric Therapy in Patients with Sudden Sensorineural Hearing Loss. Oxid Med Cell Longev 2021:8895323. DOI: 10.1155/2021/8895323 [ Links ]

17. Elsayed N, Ibrahim W, Ahmed A, Gad N. Audiological Assessment in Patients with Vitamin D Deficiency. Zagazig University Medical Journal 2024;30(2):420-5. DOI: 10.21608/zumj.2022.144132.2584 [ Links ]

18. Saleh M, Kamal NM, Maksoud AAA, Taha HM, Belasy KM. Role of vitamin D deficiency in hearing and vestibular disorders. Ain Shams Medical Journal 2022;73(1):223-30. DOI: 10.21608/asmj.2022.233571 [ Links ]

19. Karli R, Gül A, Uğur B. Effect of vitamin B12 deficiency on otoacoustic emissions. Acta Otorhinolaryngol Ital 2013;33(4):243-7. [ Links ]

20. Lasisi AO, Fehintola FA, Yusuf OB. Age-related hearing loss, vitamin B12, and folate in the elderly. Otolaryngol Head Neck Surg 2010;143(6):826-30. [ Links ]

21. Gok U, Halifeoglu I, Canatan H, Yildiz M, Gursu MF, Gur B. Comparative analysis of serum homocysteine, folic acid and Vitamin B12 levels in patients with noise-induced hearing loss. Auris Nasus Larynx 2004;31(1):19-22. DOI: 10.1016/j.anl.2003.09.001 [ Links ]

22. Houston DK, Johnson MA, Nozza RJ, Gunter EW, Shea KJ, Cutler GM, et al. Age-related hearing loss, vitamin B-12, and folate in elderly women. Am J Clin Nutr 1999;69(3):564-71. [ Links ]

23. Cadoni G, Agostino S, Scipione S, Galli J. Low serum folate levels: a risk factor for sudden sensorineural hearing loss? Acta Otolaryngol 2004;124(5):608-11. DOI: 10.1080/00016480410016216 [ Links ]

24. Partearroyo T, Vallecillo N, Pajares MA, Varela-Moreiras G, Varela-Nieto I. Cochlear Homocysteine Metabolism at the Crossroad of Nutrition and Sensorineural Hearing Loss. Front Mol Neurosci 2017;10:107. DOI: 10.3389/fnmol.2017.00107 [ Links ]

25. Martínez-Vega R, Garrido F, Partearroyo T, Cediel R, Zeisel SH, Martínez-Álvarez C, et al. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J 2015;29(2):418-32. DOI: 10.1096/fj.14-259283 [ Links ]

26. Durga J, Verhoef P, Anteunis LJC, Schoute E, Kok FJ. Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med, 2007;146(1):1-9. DOI: 10.7326/0003-4819-146-1-200701020-00003 [ Links ]

27. Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340(19):1449-54. DOI: 10.1056/NEJM199905133401901 [ Links ]

28. Martínez-Vega R, Murillo-Cuesta S, Partearroyo T, Varela-Moreiras G, Varela-Nieto I, Pajares MA. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice. Front Aging Neurosci 2016;8:209. DOI: 10.3389/fnagi.2016.00209 [ Links ]

29. Morais-Moreno C, Montero-Bravo AM, Puga AM, de Lourdes Samaniego-Vaesken M, Ruperto M, Marco Méndez R, et al. Hearing Function and Nutritional Status in Aviation Pilots from Spain Exposed to High Acoustic Damage. Nutrients 2022;14(20):4321. DOI: 10.3390/nu14204321 [ Links ]

Artificial intelligence:the authors declare that they did not used any artificial intelli-gence (AI) or AI assisted technologies to write this the article.

Almazán-Catalán J, Morais-Moreno C, Puga AM, Partearro-yo T. Impact of nutrition on hearing loss. Nutr Hosp 2024;41(N.º Extra 3):49-51

Correspondence: Teresa Partearroyo. Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720. Departamento de Ciencias Farmacéuticas y de la Salud. Facultad de Farmacia. Universidad San Pablo-CEU. Avda de Montepríncipe, s/n. 28660 Boadilla del Monte. Madrid, Spain e-mail: t.partearroyo@ceu.es

Conflicts of interest:

the authors declared no conflicts of interest.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License