SciELO - Scientific Electronic Library Online

 
vol.22 issue69Evaluation of primary care during the COVID-19 pandemic in a Peruvian regiónSpatiotemporal distribution and factors related to congenital syphilis in the brazilian northeast author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Enfermería Global

On-line version ISSN 1695-6141

Abstract

PERNALETE-LUGO, Josefrank  and  ODOR-ROSSEL, Ysaelen. El modelo Kermack-McKendrick en la propagación de cepas COVID-19: Perú 2020-2021. Enferm. glob. [online]. 2023, vol.22, n.69, pp.309-336.  Epub Mar 20, 2023. ISSN 1695-6141.  https://dx.doi.org/10.6018/eglobal.521971.

Introducción:

El modelo epidémico SIR es útil para medir la velocidad de propagación de las cepas COVID-19 (B.1.617.2/P.1/C.37/B.1.621), en términos de umbral epidemiológico R0 a lo largo del tiempo.

Objetivo:

Evaluar un modelo matemático de tipo diferencial, propio del comportamiento del COVID-19 para el colectivo peruano.

Métodos:

Se desarrolló un modelo matemático diferencial del comportamiento de la pandemia para el colectivo peruano, partiendo de la experiencia en el control de infecciones Kermack-McKendrick. Se estimó el número de susceptibles S, infectados y diseminando la infección I y recuperados R, con el uso de conjuntos de datos oficiales de la Organización Mundial de la Salud, partiendo del histórico entre el 07 de marzo y el 12 de septiembre de 2020 y; proyectado durante 52 semanas hasta el 11 de septiembre de 2021.

Resultados:

La menor tasa de infectados ocurrirá a partir del 3 de abril de 2021. Evidenciando un pronóstico de menor transmisibilidad para el 29 de mayo de 2021 con una tasa de infectados (β=0.08) y umbral (R0=0,000), además se cuantificó la exactitud del modelo en 97,795 %, con 2,205 % de error porcentual medio, siendo el valor promedio temporal R0 <1, así que cada persona que contrae la enfermedad infectará a menos de una persona antes de morir o recuperarse, por lo que el brote desaparecerá.

Conclusión:

La curva de contagios en el Perú dependerá directamente de las medidas de mitigación para frenar la propagación de la infección y predecir una transmisión sostenida a través de la vacunación contra las cepas tipo del COVID-19; con la observancia de las personas de las medidas preventivas.

Keywords : infectado; recuperado; propagación; susceptible; umbral.

        · abstract in English     · text in English | Spanish     · English ( pdf ) | Spanish ( pdf )