SciELO - Scientific Electronic Library Online

 
vol.7 issue4Factors related to bone forming inadequate response to treatment (teriparatide/PTH 1-84) in patients with severe osteoporosis: preliminary resultsBMD evolution during treatment with aromatase inhibitors and its relation to the CYP11A1 gene: prospective study in the B-ABLE cohort author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • On index processCited by Google
  • Have no similar articlesSimilars in SciELO
  • On index processSimilars in Google

Share


Revista de Osteoporosis y Metabolismo Mineral

On-line version ISSN 2173-2345Print version ISSN 1889-836X

Abstract

MAYCAS, M. et al. The VEGF (VEGFR2) 2 receptor and PTH (PTH1R) 1 receptor act as mediators in the anti-apoptotic response to mechanical stimulus in MLO-Y4 osteocyte-like cell. Rev Osteoporos Metab Miner [online]. 2015, vol.7, n.4, pp.91-97. ISSN 2173-2345.  https://dx.doi.org/10.4321/S1889-836X2015000400003.

Mechanical stimulation plays a crucial role in bone mineral maintenance. This stimulation prevents osteocyte apoptosis by a mechanism that involves β-catenin accumulation and nuclear translocation of extracellular-signal-regulated kinases (ERKs). The vascular endothelial growth factor (VEGF) and parathyroid hormone-related protein (PTHrP) modulate bone formation, although their interaction with osteocytes is unknown. In this paper we have considered the possible role of VEGF (VEGFR2) 2 receptor and PTH (PTH1R) type 1 receptor in the anti-apoptotic response to mechanical stimulation of MLO-Y4 osteocyte-like cells. The cells were subjected to mechanical stress by laminar fluid flow (10 min, 10 dinas/cm2) or hypotonic shock (240 mOsm, 1h), or stimulated with VEGF165 or PTHrP (1-36). We also compared the effects of overexpressed VEGFR2 and mechanical stimulation of these cells. Mechanical stimulation, VEGF165 or PTHrP (1-36)stimulated cellular viability and β-catenin stabilization in a similar manner, associated with its localization in the membrane. Mechanical stimulation increased PTH1R presence in the membrane. VEGFR2 inhibition as well as the PTHrP (7-34) antagonist reduced these effects. On the other hand, VEGFR2 overexpression in MLO-Y4 cells mimicked the mechanical stimulation effect on β-catenin and cellular viability. Our findings support a functional role for both systems, VEGF/VEGFR2 and PTHrP/PTH1R, in the early response to mechanical stimulation in promoting osteocyte-like viability.

Keywords : PTH1R; VEGFR2; mechanical stimulation; β-catenin; apoptosis.

        · abstract in Spanish     · text in English | Spanish     · English ( pdf ) | Spanish ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License