SciELO - Scientific Electronic Library Online

vol.8 número2Hiperparatiroidismo secundario al déficit de vitamina DComparación entre dos inmunoensayos automatizados por quimioluminiscencia para la cuantificación de 25(OH) vitamina D índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google


Revista de Osteoporosis y Metabolismo Mineral

versión On-line ISSN 2173-2345versión impresa ISSN 1889-836X


MARCO, M. et al. Analysis of mechanical behavior variation in the proximal femur using X-FEM (Extended Finite Element Method). Rev Osteoporos Metab Miner [online]. 2016, vol.8, n.2, pp.61-69. ISSN 2173-2345.

Introduction: For years, the human femur has been extensively studied experimentally with in vitro analysis. Nowadays, with computer advances, it can also be analyzed numerically. Some authors report the usefulness of finite method in predicting the mechanical behavior of this bone. There are many possibilities using the synergy between the method finite element and experimental trials. In this paper, for example, we study how they affect different osteoporotic simulations involving femur fracture loads. The aim of this study is to predict hip fracture, both the load to which this occurs as the propagation of the crack in the bone. By applying the finite element method to the field of bio-mechanics, simulation can be carried out to show the behavior under different bone load conditions. Material and methods: Using DICOM images, CT scan of the proximal end of the right femur of a male has been obtained bone geometry. By a computer program they have been generated dependent mechanical properties of the BMD each voxel, and then used a finite code to apply different load configurations and study values bone fracture elements. The numerical model has been validated in the literature. Results: Load breaking in lateral fall configuration is approximately half the load in the case of the normal position, which agrees with different experimental studies published. In addition, we have studied various load conditions in everyday situations, where it was observed that the load fracture is minimal in mono-podal position. Osteoporotic conditions have also been simulated which confirmed that the load fracture has been reduced by decreasing mechanical properties. Conclusions: By using the finite element method in conjunction with DICOM medical imaging, it is possible to study the biomechanics of the hip and obtain an estimate of bone failure. In addition, different load configurations can be applied and vary the mechanical properties of bone to simulate the mechanical behavior of low osteoporotic conditions.

Palabras clave : femur; hip fracture; CT scanner; finite elements.

        · resumen en Español     · texto en Español | Inglés     · Español ( pdf ) | Inglés ( pdf )