Mi SciELO
Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Citado por Google
- Similares en SciELO
- Similares en Google
Compartir
Revista de Osteoporosis y Metabolismo Mineral
versión On-line ISSN 2173-2345versión impresa ISSN 1889-836X
Resumen
SOLACHE-BERROCAL, G. et al. The association of MMP1 1G>2G polymorphism with aortic valve calcification. Rev Osteoporos Metab Miner [online]. 2016, vol.8, n.4, pp.115-120. ISSN 2173-2345.
Introduction: The most common cause of aortic stenosis is active calcium accumulation in the valve cusps, which implies serious clinical consequences. Various extracellular matrix metalloproteases (MMPs) have been implicated in the development of this disease. Therefore, the possible association between a functional MMP1 polymorphism and the amount of calcium deposited on the aortic valve is studied. Patients and methods: 45 patients undergoing valve replacement were included in the study. The calcium content in valve cusps removed during surgery was determined by computed micro-tomography. DNA was extracted from peripheral blood samples for genotyping the -1607 1G>2G polymorphism of MMP1 by PCR and subsequent digestion. Results: Significant differences were observed in the calcium content in aortic valves in individuals with different -1607 1G>2G genotypes (p=0.042). Thus, 2G allele carriers (homozygous or heterozygous) present higher calcium levels measured as BMD (p=0.004) as well as BV/TV (p=0.002). The association with BV/TV was independent of sex, age, degree of renal function and anatomy of the valve (p=0.02). BMD tendency (p=0.07) was also observed. Conclusion: The association between 1G>2G MMP1 polymorphism and calcium content of the aortic valve suggests that the 1G allele would have a protective effect against calcium deposits. These results support the importance of further study to confirm whether this polymorphism could be used as a possible predictor of aortic stenosis development.
Palabras clave : aortic valve disease; matrix metalloproteinase polymorphisms; microCT; calcium content.