SciELO - Scientific Electronic Library Online

 
vol.83 número12Enfermedades de depósito lisosomal: cómo salvar vidas con una lámpara de hendiduraVitreorretinopatía exudativa familiar: nuestra experiencia índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Archivos de la Sociedad Española de Oftalmología

versión impresa ISSN 0365-6691

Arch Soc Esp Oftalmol vol.83 no.12  dic. 2008

 

REVISIÓN

 

El asesoramiento genético en los déficits visuales y auditivos

Genetic counselling in visual and auditory disorders

 

 

Millán J.M.1, Aller E.1, Jaijo T.2, Grau E.3, Beneyto M.4, Nájera C.5

Unidad de Genética. Hospital Universitario La Fe y Departamento de Genética. Universidad de Valencia y Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER). Valencia. España.
1 Doctor en Ciencias Biológicas.
2 Licenciada en Bioquímica.
3 Licenciada en Ciencias Biológicas.
4 Licenciada en Medicina.
5 Doctora en Ciencias Biológicas. Licenciada en Farmacia.

Proyecto subvencionado PI07/0558 del Fondo de Investigación Sanitaria (FIS).

Dirección para correspondencia

 

 


RESUMEN

Objetivo: Las enfermedades hereditarias que afectan a la retina y la audición presentan una amplia heterogeneidad clínica y genética. Durante la pasada década se han producido importantes avances en el conocimiento de la patogenia molecular de estas enfermedades y, actualmente, más de 200 genes y loci están implicados en enfermedades de la retina y más de 60 son responsables de pérdida de audición.
Método: El estudio genético molecular es crucial para confirmar el diagnóstico clínico, permite, en ocasiones, conocer el pronóstico de la enfermedad, un consejo genético y reproductivo adecuado y permite la posibilidad de crear grupos de pacientes genéticamente homogéneos para futuros ensayos clínicos.
Resultados: El elevado número de genes implicados hace que el diagnóstico molecular no sea factible en términos de coste, tiempo y esfuerzo técnico y no existe ningún centro que oferte el análisis de todos los genes conocidos. Recientemente, se han desarrollado varias herramientas diagnósticas dirigidas a paliar este problema.
Conclusiones: En este trabajo se ha revisado la amplia heterogeneidad genética de las distrofias retinianas y la hipoacusia, los recientes descubrimientos de nuevos genes, las distintas herramientas diagnósticas basadas en microchips de ADN, sus ventajas y limitaciones y los nuevos avances en busca de una terapia.

Palabras clave: Consejo genético, distrofias hereditarias de retina, hipoacusias, riesgo de recurrencia, futuras terapias.


ABSTRACT

Purpose: Inherited retinal dystrophies and hearing loss disorders have a broad clinical and genetic heterogeneity. Over the last decade there have been major advances in our understanding of the molecular pathology of these diseases; currently over 200 genes and loci are known to be involved in retinal disorders, and over 60 genes/loci are causative for hearing impairment.
Methods: Genetic testing is crucial for confirming the diagnosis at a molecular level. It also allows a more precise prognosis to be made of the future clinical evolution, as well as an accurate genetic and reproductive counselling, and raises the possibility of creating genetically homogeneous groups of patients for future clinical trials.
Results: The high number of genes responsible for these disorders makes molecular testing overwhelming in terms of cost, time and technical effectiveness, and no centre offers testing of all known genes. Several diagnostic tools have emerged recently to circumvent this problem.
Conclusions: In this report, we review the vast genetic heterogeneity of retinal dystrophies and hypoacusis, recent advances in gene discovery, the different DNA-based microarray technologies available for molecular testing, their benefits and limitations, and novel therapeutic approaches (Arch Soc Esp Oftalmol 2008; 83: 689-702).

Key words: Genetic counselling, inherited retinal dystrophies, hearing loss, recurrence risk, future therapies.


 

Introducción

Las enfermedades derivadas de la pérdida de visión y audición de causa genética, constituyen uno de los problemas más importantes para los sistemas públicos de salud. Por otra parte, son enfermedades que afectan a órganos necesarios para la comunicación y, por lo tanto, pueden suponer un alto grado de aislamiento social.

Cada vez son más frecuentes las parejas que acuden a los servicios de Oftalmología, Otorrinolaringología o a las consultas de Genética en busca de asesoramiento porque hay antecedentes de alguna retinopatía o problemas de audición en la familia, en uno de los miembros de estas parejas o han tenido previamente un hijo con alguno de estos problemas.

 

Sujetos, material y métodos

Asesoramiento genético

El asesoramiento genético, mal llamado consejo genético (traducción del término inglés Genetic Counselling) consiste en ofrecer la información médica y científica disponible a aquellas personas afectadas por una enfermedad o con riesgo de padecer o transmitir una determinada enfermedad a su descendencia, incluyendo las posibles medidas para tratar o retrasar los síntomas de la enfermedad y evitar la transmisión de la misma. El genetista no aconseja al paciente, le ofrece la información disponible para que éste decida. El asesoramiento genético supone:

1. Alcanzar un diagnóstico de la enfermedad: éste es el primer paso, difícil en ocasiones y especialmente en las enfermedades neurosensoriales porque fenómenos como la expresividad variable, que se explicará más adelante, afectan este tipo de enfermedades. Sin un correcto diagnóstico clínico, el asesoramiento será incompleto e impreciso.

2. Estima del riesgo. Tanto de desarrollar la enfermedad como de transmitirla a la descendencia.

3. Ayuda especializada que incluye la consulta con médicos clínicos especialistas, en ocasiones ayuda psicológica y la oferta del diagnóstico genético prenatal o del diagnóstico genético preimplantacional.

Este último punto implica la realización de análisis de genética molecular. El diagnóstico genético prenatal consiste en la detección de la mutación o mutaciones responsables de la enfermedad en el embrión realizando una biopsia corial (entre las semanas 11-13 de gestación) o una amniocentesis (semanas 15-16).

El diagnóstico genético preimplantacional implica la implantación en el útero de embriones libres de la enfermedad con lo cual se evita el aborto terapéutico. Consiste en la fecundación in vitro de óvulos, previamente extraídos de la futura madre, con esperma de su pareja. Cuando los embriones tienen entre 6 y 8 células, se extrae una de ellas y se analiza para la presencia del defecto genético detectado previamente en la pareja. Se implantará únicamente aquel o aquellos embriones libres del defecto.

Para que este diagnóstico, prenatal o preimplantacional, sea posible, es necesario conocer previamente cuál es el defecto genético implicado en la familia; no sólo qué gen está alterado sino la mutación o mutaciones concretas de este gen presentes en la persona afectada.

Las pruebas genéticas, como veremos a continuación, no son sencillas y en el caso de las enfermedades neurosensoriales, en muchas ocasiones, son irrealizables con los medios disponibles actualmente.

En un primer momento se pensó que una enfermedad (una entidad clínica) era causada por un único gen, así, se buscaba el gen de la retinosis pigmentaria, el gen del síndrome de Usher, el de la maculopatía, etc. Posteriormente, el desarrollo de la genética molecular ha puesto, y continúa poniendo de manifiesto desde las últimas dos décadas, una enorme heterogeneidad genética de ambos problemas, hipoacusia y ceguera, que implica que el asesoramiento genético en las familias en las que existen antecedentes de estas enfermedades y muy especialmente en los casos esporádicos, sea muy complicado.

Los avances producidos en la investigación de los genes implicados y los mecanismos patogénicos de estas enfermedades no se corresponden con las posibilidades de estudio de las mismas en los laboratorios asistenciales. De hecho, existen hasta la fecha más de 180 genes implicados en degeneraciones retinianas, sindrómicas y no sindrómicas. Las distrofias retinianas constituyen el núcleo de los problemas hereditarios relacionados con la visión, tanto por su prevalencia, su complejidad y la ausencia de tratamiento, y nos centraremos en ellas. A modo de ejemplo, una entidad clínica como la retinosis pigmentaria (RP) presenta los tres patrones mendelianos de transmisión hereditaria y hasta la fecha se han identificado 14 genes para las formas autosómica dominante, 19 para la forma autosómica recesiva y 2 ligadas al cromosoma X; para la amaurosis congénita de Leber existen 15 genes responsables y se supone que queda al menos uno más por identificar, además su patrón de transmisión puede ser autosómico dominante o recesivo. Se han identificado 9 genes distintos para el síndrome de Bardet-Biedl (1), otros 9 para el síndrome de Usher (2), enfermedad en la que se asocian los dos déficits, visual y auditivo, que tratamos en este trabajo y, al menos dos para la enfermedad de Refsum, una rara enfermedad peroxisomal que también asocia sordera con RP además de neuropatía periférica, anosmia, ataxia cerebelosa y, en algunos casos, displasia esquelética, ictiosis, cataratas y arritmias cardíacas (3). La causa de la enfermedad es la acumulación de ácido fitánico al fallar el proceso de degradación del mismo.

En el contexto de esta visión general de las distrofias retinianas, cabe mencionar la amplia diversidad de funciones que las proteínas implicadas desempeñan (tabla I). De todos estos genes, un cierto número codifican proteínas implicadas en la fototransducción, incluyendo la rodopsina, las subunidades alfa y beta de la fosfodiesterasa dependiente del GMP cíclico, las subunidades alfa y beta del canal iónico dependiente del GMP cíclico específico de bastones, la arrestina, etc.

Otras intervienen en el ciclo de la vitamina A. Están involucradas en los procesos de transporte e isomerización del 11-cis-retinal a todo-trans-retinal, bien en el interior del fotorreceptor, bien en el epitelio pigmentario de la retina (EPR). Hemos englobado estas proteínas dentro del metabolismo del ciclo visual, incluyendo en este apartado la proteína MERKT, implicada en la fagocitosis de los discos de opsina del segmento externo de los fotorreceptores en el EPR, en tanto que, aunque no forme parte directamente de la maquinaria proteica responsable del metabolismo de los retinoides, forma parte, al igual que estas, de los procesos que ocurren entre el segmento externo del fotorreceptor y el EPR.

Una tercera función representada por genes implicados en las retinopatías es el desarrollo de la retina misma. Por ejemplo, CRX y NRL son factores de transcripción que parecen estar implicados, individual o sinérgicamente, en la regulación de la expresión de otros genes específicos de retina como la rodopsina.

Recientemente, se ha comprobado que mutaciones en algunos genes implicados en el procesado de pre-RNA mensajero producen RP. Resulta interesante que estos genes, PRPF3, PRPF8 y PRPF31 se expresan de forma ubicua en el organismo, sin embargo, sólo causan un fenotipo patológico en la retina.

El mayor porcentaje de genes implicados en distrofias retinianas tienen función estructural. Son proteínas implicadas en la correcta disposición de las estructuras tridimensionales del fotorreceptor, los discos de opsina (RDS-periferina y ROM1), el cilio conector y la región periciliar (TULP1, USH2A, CRB1, FSCN2, RP2, RPGR, RPGRIP1) importante para el tráfico de proteínas desde el segmento interno al externo, el anclaje del fotorreceptor al RPE, etc.

Además, algunos genes están implicados en la integración de la información visual, el control de la apoptosis y otras funciones aún desconocidas.

En cuanto a las hipoacusias neurosensoriales, se han identificado más de 25 genes implicados en las formas no sindrómicas y más de 20 en hipoacusias sindrómicas lo que hace que el rastreo del gen o genes implicados en la enfermedad de una familia concreta sea, en aproximadamente la mitad de los casos, virtualmente imposible. La tabla II muestra los principales genes implicados en hipoacusias hereditarias no sindrómicas, su localización cromosómica, su función y si esos genes son responsables además de alguna forma de hipoacusia sindrómica como ocurre en las retinopatías.

 

Además, todavía existen muchos otros genes implicados en estas patologías que están ya localizados, es decir, se conoce la región cromosómica donde se encuentran, pero todavía no han sido caracterizados y, por tanto, no es posible su cernimiento mutacional.

Para ver con mayor detalle y en constante proceso de actualización los genes identificados y localizados para las distintas formas de transmisión hereditaria de las hipoacusias hereditarias aconsejamos visitar la página web de Hereditary Hearing Loss Homepage:

http://webh01.ua.ae.be/hhh/

y para las enfermedades retinianas, RetNet:

http://www.sph.uth.tmc.edu/Retnet/

 

Resultados

Considerando las posibilidades y herramientas actuales y las excepciones a las leyes mendelianas de la herencia que ha demostrado la experiencia, detallamos a continuación un breve resumen de las posibilidades de estudio de estas enfermedades.

Pruebas genéticas asumibles por los laboratorios asistenciales

Los estudios que se ofertan en los laboratorios de genética asistenciales dependen de varios factores:

El número y complejidad de los genes implicados en la enfermedad. Como ya hemos visto en el caso de las distrofias de la retina y las hipoacusias, ambos factores afectan muy negativamente a la posibilidad de realizar pruebas genéticas sencillas.

Debido quizás a la complejidad anatómica y fisiológica de ambos órganos, el ojo y el oído, y a la cantidad de proteínas y genes que son necesarios para el correcto funcionamiento de los mismos, la detección del defecto genético responsable del déficit en cada paciente es una tarea muy ardua.

Dentro de la complejidad de ambos problemas, existe una diferencia importante entre las hipoacusias y las retinopatías.

En las hipoacusias el 80% de los casos hereditarios corresponde a un patrón autosómico recesivo. Además, cinco mutaciones, 35delG en el gen GJB2, del (D13S1854) y del (D13S1830) en el gen GJB6, la mutación 1555G>A del gen mitocondrial r12S y la mutación Q829X del gen OTOF están presentes en cerca del 50% de los casos de hipoacusia en España (4) y, por lo tanto, un cernimiento relativamente sencillo de estas 5 mutaciones permite el asesoramiento genético en un buen número de familias con antecedentes de hipoacusia.

El caso de las retinopatías es mucho más complicado. No existe un patrón de transmisión tan prevalente como las hipoacusias ni hay ningún gen responsable de un porcentaje alto de retinopatías (5).

Estos problemas hacen que en la actualidad el estudio de estas enfermedades sea absolutamente dependiente de financiación derivada de proyectos de investigación, no sólo en cuanto a material fungible e inventariable sino, sobre todo, de personal.

Problemas derivados de las formas de transmisión no clásicas: Alteración del riesgo de recurrencia teórico

Tanto para las enfermedades hereditarias retinianas como para las hipoacusias neurosensoriales, existen ejemplos de transmisión hereditaria que siguen los 3 patrones clásicos mendelianos: formas autosómicas dominantes, autosómicas recesivas y ligadas al sexo. Además existen formas de retinopatías e hipoacusias asociadas a problemas mitocondriales.

Sin embargo, hay una serie de fenómenos sobradamente conocidos por los genetistas, que se dan en este tipo de enfermedades y que alteran estos modelos de transmisión hereditaria, complicando aún más el asesoramiento genético: El pleiotropismo, es relativamente frecuente. Ejemplos de este fenómeno pueden ser la mayoría de los genes implicados en el síndrome de Usher que, dependiendo del tipo de mutación, afectan al oído, a la retina o a ambos. Como puede apreciarse en la tabla I, algunos genes pueden dar lugar a retinosis pigmentaria, enfermedad de Stargardt y degeneración macular asociada a la edad (6). La penetrancia incompleta es un fenómeno frecuente en el síndrome de Waardenburg (7). La expresividad variable también es un fenómeno frecuente tanto en retinopatías como en hipoacusias. Por ejemplo, los pacientes que tienen la mutación 35delG en el gen GJB2, presentan una hipoacusia que puede ir desde moderada a severa (8,9) o el conjunto de afectados de retinosis pigmentaria con mutaciones en el gen de la rodopsina pueden presentar un inicio variable de la enfermedad y mayor o menor grado de pérdida de campo visual incluso entre afectos de la misma familia (9). Otro fenómeno que afecta exclusivamente a las formas ligadas al sexo es la lyonización o inactivación aleatoria del cromosoma X. Este fenómeno podría explicar el hecho de que algunas mujeres portadoras presenten síntomas de la enfermedad a veces tan graves como un varón afectado por una retinopatía ligada al cromosoma X. Menos frecuentes son los casos de disomía uniparental, aún así, se ha detectado un caso de disomía uniparental parcial del cromosoma 1 que ha dado lugar a la enfermedad de Stargardt en un paciente (10,11) y un caso similar en el cromosoma 13 ha dado lugar a hipoacusia debida a mutaciones en el gen GJB2 en hermanos de la misma familia (12). Por último, se han detectado casos de herencia digénica en retinopatías entre las proteínas periferina/RDS y Rom-1, dos proteínas integrantes de los discos de los segmentos externos de los fotorreceptores de la retina (13) e hipoacusia entre las conexinas 26 y 30 (14), aunque recientemente el modelo de herencia digénica para estas conexinas se ha puesto en duda (15).

 

Discusión

Limitaciones y beneficios del asesoramiento genético

La principal limitación es la derivada de la complejidad de las pruebas genéticas para la detección de la mutación o mutaciones responsables de la enfermedad en cada familia. Además, existen los problemas derivados de las posibles variaciones de las formas mendelianas de transmisión de la enfermedad.

Como se ha mencionado, no es posible hoy por hoy, que un laboratorio asistencial de genética pueda estudiar un número de genes que explique más del 50% de las hipoacusias hereditarias y de un porcentaje todavía menor de retinopatías. Incluso en laboratorios especializados y dedicados exclusivamente a estas patologías, el porcentaje de casos resueltos no llega ni con mucho a la totalidad de los casos.

Mientras no se desarrollen herramientas genéticas que permitan el estudio de un gran número de genes/mutaciones en un plazo de tiempo corto y con un coste razonable, no será posible.

Microchips de ADN

Una de estas herramientas, aparecida recientemente es el microchip de ADN. El microchip o microarray de ADN permite detectar un gran número de mutaciones en distintos genes a la vez con una pequeña muestra de ADN del paciente en muy corto espacio de tiempo (16-18). Esta labor mediante las técnicas habituales se demoraría meses. El problema es que estos microchips sólo detectan las mutaciones que se incorporan al mismo, no detecta mutaciones nuevas y, por lo tanto, en aquellos pacientes que tienen mutaciones no descritas previamente, el microchip no detectará nada. Para que la eficacia del microchip aumente es necesario el análisis mutacional de estos pacientes mediante los métodos «tradicionales» y actualizar el microchip mediante la incorporación de las nuevas mutaciones detectadas.

Otra herramienta surgida recientemente es el genotipado de alto rendimiento mediante SNPs (19). Este microchip de SNPs permite descartar mediante un estudio indirecto, un determinado número de genes implicados tanto en RP como en amaurosis congénita de Leber. Permite, en función del tamaño familiar, el número de afectados y la presencia o no de consanguinidad, descartar la implicación de un importante número de genes implicados en estas patologías lo que le convierte en una herramienta muy útil como primera aproximación al diagnóstico, sin embargo, no tiene utilidad en los casos esporádicos y no evita la secuenciación de los genes no descartados.

Un beneficio a medio plazo del diagnóstico molecular de las distrofias retinianas es la creación de grupos genéticamente homogéneos de pacientes sobre los que puedan aplicarse futuros ensayos clínicos y protocolos concretos de terapia génica.

Perspectivas en terapia

El beneficio de los estudios genéticos, ante la ausencia actual de una terapia que evite el desarrollo de la enfermedad, reside no sólo en la posibilidad de la realización del diagnóstico prenatal sino también en la creación de grupos homogéneos de pacientes, desde el punto de vista genético para futuros ensayos clínicos.

Cabe destacar que la investigación va encaminada a desarrollar terapias futuras, y estas investigaciones se abordan desde distintos puntos de vista.

Tratamiento de la hipoacusia neurosensorial

El tratamiento de la pérdida auditiva se contrarresta de dos formas distintas según el grado y carácter de la hipoacusia:

En pacientes que presentan hipoacusia entre leve y moderado-severa, los pacientes refieren mejora de la audición con la utilización de audífonos.

En pacientes que padecen sordera profunda congénita, y en pacientes en los que la hipoacusia es progresiva, alcanzando en estadios avanzados el grado de severo-profunda, se están aplicando con gran éxito los implantes cocleares.

Perspectivas de terapia para las degeneraciones retinianas

A diferencia de las hipoacusias, no existe en la actualidad ningún tratamiento farmacológico ni protésico que permita la recuperación del sentido dañado, aunque sí se están desarrollando diferentes estrategias terapéuticas dependiendo del estadio de la enfermedad en el que nos encontremos:

En etapas iniciales de la enfermedad se podrán aplicar tanto terapias para ralentizar el proceso degenerativo, mediante la aplicación de factores neurotróficos; como estrategias curativas, como son la terapia génica o los transplantes retinianos.

En los estadios finales en los que la degeneración de la retina está ya muy avanzada, únicamente serán de utilidad los transplantes de retina o los implantes visuales.

Factores neurotróficos

Estas sustancias protegen a las células retinianas de los procesos apoptóticos que desencadenan la muerte de las células retinianas. Es necesario que estos factores se administren de forma continuada y en dosis fisiológicas. Un gran avance en este aspecto, que está teniendo gran éxito en los primeros ensayos con humanos, es la utilización de las llamadas células encapsuladas. Se trata de la implantación en el globo ocular de una minúscula cápsula hecha de material poroso conteniendo células que liberan factores neurotróficos (20).

Terapia génica

Consiste en la sustitución o reparación del gen defectivo mediante la introducción de material genético en las células afectadas por medio de un vector.

La estrategia será diferente en función de la forma de transmisión de la retinopatía. Así, en aquellos casos con herencia dominante, se trata de silenciar la expresión del gen mutado mientras que en los casos de herencia recesiva se ha de incorporar un gen no mutado y conseguir que se exprese de forma correcta.

Otra dificultad para la aplicación de la terapia génica viene dada por la expresión de estos genes. Algunos genes implicados en la enfermedad se expresan específicamente en retina. Para estos casos el problema estriba en la entrega del gen en la retina atravesando el resto de capas oculares.

Sin embargo, en muchos casos, el gen alterado presenta distintas isoformas y se expresa en varios tejidos distintos, a veces de forma ubicua e incluso en ocasiones, estos genes forman parte de la maquinaria responsable de la maduración y expresión de otros genes. A pesar de que estos genes se expresan en distintos tejidos o de forma sistémica, tan sólo producen patología en la retina, posiblemente porque la alteración ocurre tan sólo en la isoforma específica de este tejido aunque no pueden descartarse otras causas como la presencia de genes en estos tejidos distintos de la retina, que suplan la función del alterado. Para estos casos, la dificultad viene porque la modificación de la expresión de ese gen que en la retina es patológico, podría producir efectos adversos en la función de ese mismo gen en otros tejidos. Es necesario conocer los procesos biológicos por los que un gen expresa una isoforma concreta específicamente en un tejido o en un momento determinado del desarrollo de un tejido para desarrollar una terapia génica racional.

Otro problema es la baja eficiencia de transducción de los vectores. Por último, la sub- o sobrexpresión de algunos transgenes pueden dar lugar a una degeneración de los fotorreceptores (21).

Los últimos estudios indican que los vectores más eficaces para integrar de manera estable los transgenes en el genoma de las células retinianas y que presentan además un nivel alto y persistente de expresión son los lentivirus (22). Éstos han sido utilizados en los primeros experimentos de terapia génica para las distrofias retinianas que se han llevado a cabo en el ratón mutante rd mediante la introducción de GFP, una proteína fluorescente de fácil identificación en cortes histológicos, en células del epitelio pigmentario de la retina (23). Actualmente, se están llevando cabo dos ensayos clínicos mediante terapia génica, uno para la degeneración macular asociada a la edad (24) y otro para la amaurosis congénita de Leber debida a mutaciones en el gen RPE65 (25). Ambos ensayos están en fase I y han demostrado que la inyección de ciertos vectores virales en el ojo es segura.

Transplantes de retina

Retinas artificiales: se trata de un microchip de minúsculas dimensiones conteniendo células solares microscópicas capaces de convertir la luz en impulsos eléctricos. Éste se implanta mediante cirugía en el ojo del paciente, en un lateral subretiniano. Esta tecnología no es todavía aplicable para la cura de las deficiencias visuales, pero es un campo en el que las investigaciones están avanzando rápidamente.

Células madre: estas células pluripotentes pueden cultivarse en laboratorio y, estimuladas de manera conveniente, son inducidas a diferenciarse en la población celular deseada. En este caso el objetivo sería la obtención de retinas cultivadas in vitro para poder ser posteriormente transplantadas (23). Durante mucho tiempo, se pensó que los único tejidos adultos de donde se podían obtener células madre eran la médula ósea, epitelio de la piel, músculo y del tracto digestivo. Posteriormente, se ha comprobado que se pueden obtener células progenitoras de otros muchos tejidos incluido el ojo (26). A favor de esta estrategia terapéutica está el hecho de que la retina es desde el punto de vista inmunológico, un sitio privilegiado. La entrega de células y tejidos a la retina se ha mostrado claramente factible y, en algunos casos, beneficiosa (27). Sin embargo, los intentos de rescatar la pérdida de fotorreceptores mediante el transplante subretiniano de capas de retina fetal ha sido decepcionante (28). Este tipo de transplantes muestran una baja integración sináptica en la retina huésped y no han funcionado bien en pacientes con RP (29). Se ha comprobado que la capacidad de integración sináptica depende en gran medida del estado de diferenciación de las células transplantadas. Recientemente, el grupo del Prof. Robin Ali, de la Universidad de Londres demostraron que los fotorreceptores postmitóticos se integraban mucho más eficazmente en la retina de ratón que las células progenitoras de la retina no diferenciadas y multipotenciales (23). Este descubrimiento pone de manifiesto que, aunque cada una de estas terapias es muy prometedora, es necesario todavía profundizar más en la biología de la retina para llegar a una terapia racional para las distrofias retinianas.

 

Agradecimientos

Nuestro más sincero agradecimiento a todos los pacientes afectados de distrofias retinianas e hipoacusia así como a sus familiares. Estamos en deuda con la Federación de Asociación de Afectados por Retinosis Pigmentaria del Estado Español (FAARPEE) y Fundación ONCE.

 

Bibliografía

1. Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K. Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci U S A 2008; 105: 4242-4246.        [ Links ]

2. Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006; 15: R262-R270.        [ Links ]

3. Wills AJ, Manning NJ, Reilly MM. Refsum’s disease. QJM 2001; 94: 403-406.        [ Links ]

4. Gallo-Teran J, Morales-Angulo C, Rodriguez-Ballesteros M, Moreno-Pelayo MA, del Castillo I, Moreno F. Prevalence of the 35delG mutation in the GJB2 gene, del (GJB6-D13S1830) in the GJB6 gene, Q829X in the OTOF gene and A1555G in the mitochondrial 12S rRNA gene in subjects with non-syndromic sensorineural hearing impairment of congenital/childhood onset. Acta Otorrinolaringol Esp 2005; 56: 463-468.        [ Links ]

5. Ayuso C, Garcia-Sandoval B, Najera C, Valverde D, Carballo M, Antiñolo G. Retinitis pigmentosa in Spain. The Spanish Multicentric and Multidisciplinary Group for Research into Retinitis Pigmentosa. Clin Genet 1995; 48: 120-122.        [ Links ]

6. Paloma E, Coco R, Martinez-Mir A, Vilageliu L, Balcells S, Gonzalez-Duarte R. Analysis of ABCA4 in mixed Spanish families segregating different retinal dystrophies. Hum Mutat 2002; 20: 476.        [ Links ]

7. Moriaux F, Hamedani M, Hurbli T, Utreza Y, Oubaaz A, Morax S. Waardenburg’s syndrome. J Fr Ophtalmol 1999; 22: 799-809.        [ Links ]

8. Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J, et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 2005; 77: 945-957.        [ Links ]

9. Cryns K, Orzan E, Murgia A, Huygen PL, Moreno F, del Castillo I, et al. A genotype-phenotype correlation for GJB2 (connexin 26) deafness. J Med Genet 2004; 41:147-154.        [ Links ]

10. Schuster A, Weisschuh N, Jagle H, Besch D, Janecke AR, Zirler H, et al. Novel rhodopsin mutations and genotype-phenotype correlation in patients with autosomal dominant retinitis pigmentosa. Br J Ophthalmol 2005; 89: 1258-1264.        [ Links ]

11. Riveiro-Alvarez R, Valverde D, Lorda-Sanchez I, Trujillo-Tiebas MJ, Cantalapiedra D, Vallespin E, et al. Partial paternal uniparental disomy (UPD) of chromosome 1 in a patient with Stargardt disease. Mol Vis 2007; 13: 96-101.        [ Links ]

12. Álvarez A, del Castillo I, Pera A, Villamar M, Moreno-Pelayo MA, Rivera T, et al. Uniparental disomy of chromosome 13q causing homozygosity for the 35delG mutation in the gene encoding connexin26 (GJB2) results in prelingual hearing impairment in two unrelated Spanish patients. J Med Genet 2003; 40: 636-639.        [ Links ]

13. Goldberg AF, Molday RS. Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc Natl Acad Sci U S A 1996; 93: 13726-13730.        [ Links ]

14. del Castillo FJ, Rodriguez-Ballesteros M, Álvarez A, Hutchn T, Leonardi E, de Oliveira CA, et al. A novel deletion involving the connexin-30 gene, del (GJB6-D13S1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 2005; 42: 588-594.        [ Links ]

15. Wilch E, Zhu M, Burkhart KB, Regier M, Elfenbein JL, Fisher RA, et al. Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele. Am J Hum Genet 2006; 79: 174-179.        [ Links ]

16. Cremers FP, Kimberling WJ, Kulm M, de Brower AP, van Wijk E, Te Brinke H, et al. Development of a genotyping microarray for Usher syndrome. J Med Genet 2007; 44: 153-160.        [ Links ]

17. Vallespin E, Cantalapiedra D, Riveiro-Alvarez R, Wilke R, Aguirre-Lamban J, Avila-Fernández A, et al. Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. Invest Ophthalmol Vis Sci 2007; 48: 5653-5661.        [ Links ]

18. Valverde D, Riveiro-Alvarez R, Bernal S, Jaakson K, Baiget M, Navarro R, et al. Microarray-based mutation analysis of the ABCA4 gene in Spanish patients with Stargardt disease: evidence of a prevalent mutated allele. Mol Vis 2006; 12: 902-908.        [ Links ]

19. Pomares E, Marfany G, Brión MJ, Carracedo A, González-Duarte R. Novel high-throughput SNP genotyping cosegregation analysis for genetic diagnosis of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. Hum Mutat 2007; 28: 511-516.        [ Links ]

20. Bush RA, Lei B, Tao W, Raz D, Chan CC, Cox TA, Santos-Muffley M, Sieving PA. Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: dose-dependent effects on ERG and retinal histology. Invest Ophthalmol Vis Sci 2004; 45: 2420-2430.        [ Links ]

21. Chen J, Flannery JG, LaVail MM, Steinbeg RH, Xu J, Simon MI. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Nat Acad Sci USA 1996; 93: 7042-7047.        [ Links ]

22. Pang J, Cheng M, Haire SE, Barker E, Planelles V, Blanks JC. Efficiency of lentiviral transduction during development in normal and rd mice. Mol Vis 2006; 12: 756-767.        [ Links ]

23. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444: 203-207.        [ Links ]

24. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gen Ther 2006; 17: 167-176.        [ Links ]

25. Jacobson SG, Boye SL, Aleman TS, Colon TJ, Zeiss CJ, Roman AJ, et al. Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gen Ther 2006; 17: 845-858.        [ Links ]

26. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia Aj, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science 2000; 287: 2032-2036.        [ Links ]

27. Lund RD, Kwan AS, Keegan DJ, Sauvé Y, Coffey PJ, Lawrence JM. Cell transplantation as a treatment for retinal disease. Prog Retin Eye Res 2001; 20: 415-449.        [ Links ]

28. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A, et al. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 2004; 45: 4151-4160.        [ Links ]

29. Zhang Y, Arnér K, Ehinger B, Perez MT. Limitation of anatomical integration between subretinal transplants and the host retina. Invest Ophthalmol Vis Sci 2003; 44: 324-331.        [ Links ]

30. Paloma E, Martínez-Mir A, García-Sandoval B, Ayuso C, Vilageliu L, González-Duarte R, et al. Novel homozygous mutation in the alpha subunit of the rod cGMP gated channel (CNGA1) in two Spanish sibs affected with autosomal recessive retinitis pigmentosa. J Med Genet 2002; 39: E66.        [ Links ]

31. Bareil C, Hamel CP, Delague V, Arnaud B, Demaille J, Claustres M. Segregation of a mutation in CNGB1 encoding the beta-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa. Hum Genet 2001; 108: 328-334.        [ Links ]

32. Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 2005; 243: 235-242.        [ Links ]

33. Milla E, Maseras M, Martínez-Gimeno M, Gamundi MJ, Assaf H, Esmerado C, et al. Estudio genético-molecular de 148 casos de retinosis pigmentaria autosómica dominante (RPAD). Arch Soc Esp Oftalmol 2002; 77: 481-484.        [ Links ]

34. Dryja TP, McEvoy JA, McGee TL, Berson EL. Novel rhodopsin mutations Gly114Val and Gln148Pro in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2000; 41: 3124-3127.        [ Links ]

35. Dryja TP, Rucinski DE, Chen SH, Berson EL. Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999; 40: 1859-1865.        [ Links ]

36. McLaughlin ME, Ebhart TL, Berson EL, Dryja TP. Muttion spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA 1995; 92: 3249-3253.        [ Links ]

37. Sippel KC, DeStefano JD, Berson EL, Dryja TP. Evaluation of the human arrestin gene in patients with retinitis pigmentosa and stationary night blindness. Invest Ophthalmol Vis Sci 1998; 39: 665-670.        [ Links ]

38. Michaelides M, Aligianis IA, Ainsworth JR, Good P, Mollon JD, Maher ER et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 2004; 45: 1975-1982.        [ Links ]

39. Wu H, Cowing JA, Michaelides M, Wilkie SE, Jeffery G, Jenkins SA et al. Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause «cone dystrophy with supernormal rod electroretinogram» in humans. Am J Hum Genet 2006; 79: 574-579.        [ Links ]

40. Yamamoto H, Simon A, Eriksson U, Harris E, Berson EL, Dryja TP. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat Genet 1999; 22: 188-191.        [ Links ]

41. Klevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, van den Born LI, et al. Microarray-based mutation analysis of ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet 2004; 12: 1024-1032.        [ Links ]

42. Sullivan LS, Bowne SJ, Birch DG, Hughbanks-Wheaton D, Heckenlively JR, Lewis RA, et al. Prevalence of disease-causing mutations in families with autosomal dominnat retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci 2006; 47: 3052-3064.        [ Links ]

43. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, et al. Mutations in MERKT, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000; 26: 270-271.        [ Links ]

44. Morimura H, Saindelle-Ribeaudeau F, Berson EL, Dryja TP, Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nat Genet 1999; 23: 393-394.        [ Links ]

45. Morimura H, Berson EL, Dryja TP. Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. Invest Ophthalmol Vis Sci 1999; 40: 1000-1004.        [ Links ]

46. Marquardt A, Stöhr H, Passmore LA, Krämer F, Rivera A, Weber BH. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 1998; 7: 1517-1525.        [ Links ]

47. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci USA 1998; 95: 3088-3093.        [ Links ]

48. Alvarez BV, Vithana EN, Yang Z, Koh AH, Yeung K, Yong V, et al. Identification and characterization of a novel mutation in the carbonic anhydrase IV gene that causes retinitis pigmentosa. Invest Ophthalmol Vis Sci 2007; 48: 3459-3468.        [ Links ]

49. Perrault I, Hanein S, Gerber S, Barbet F, Ducroq D, Dollfus H, et al. Retinal dehydrogenase 12 (RDH12) mutations in Leber congenital amaurosis. Am J Hum Genet 2004; 75: 639-646.        [ Links ]

50. Hartong DT, Dange M, McGee TL, Berson EL, Dryja TP, Colman RF. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat Genet 2008; 40: 1230-1234.        [ Links ]

51. Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z, et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 2001; 27: 89-93.        [ Links ]

52. Köhn L, Kadzhaev K, Burstedt MS, Haraldsson S, Hallberg B, Sandgren O, et al. Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet 2007; 15: 664-671.        [ Links ]

53. Rivolta C, Berson EL, Dryja TP. Dominant Leber congenital amaurosis, cone-rod degeneration, and retinitis pigmentosa caused by mutant versions of the transcription factor CRX. Hum Mutat 2001; 18: 488-498.        [ Links ]

54. Martínez-Gimeno M, Maseras M, Baiget M, Beneito M, Antinolo G, Ayuso C, et al. Mutations P51U and G122E in retinal transcription factor NRL associated with autosomal dominant and sporadic retinitis pigmentosa. Hum Mutat 2001; 17: 520.        [ Links ]

55. Thompson DA, Li Y, McHenry CL, Carlson TJ, Ding X, Sieving PA, et al. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat Genet 2001; 28: 123-124.        [ Links ]

56. Bernal S, Solans T, Gamundi MJ, Hernan I, de Jorge L, Carballo M, et al. Analysis of the involvement of the NR2E3 gene in autosomal recessive retinal dystrophies. Clin Genet 2008; 73: 360-366.        [ Links ]

57. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006; 79: 556-561.        [ Links ]

58. Abd El-Aziz MM, Barragan I, O’Driscoll CA, Goodstadt L, Prigmore E, Borrego S, et al. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat Genet 2008; (Epub ahead of print).        [ Links ]

59. Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 2000; 9: 27-34.        [ Links ]

60. Martínez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Millá E, Ayuso C, et al. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2003; 44: 2171-2177.        [ Links ]

61. Sullivan LS, Browne SJ, Seaman CR, Blanton SH, Lewis RA, Heckenlively JR, et al. Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006; 47: 4579-4588.        [ Links ]

62. Chakarova CF, Papaioannou MG, Khanna H, Lopez I, Waseem N, Shah A et al. Mutations in TOPORS cause autosomal dominant retinitis pigmentosa with perivascular retinal pigment epithelium atrophy. Am J Hum Genet 2007; 81: 1098-1103.        [ Links ]

63. Friedman JS, Chang B, Kannabiran C, Chakarova C, Singh HP, Jalali S, et al. Premature truncation of a novel protein, RD3, exhibiting subnuclear localization is associated with retinal degeneration. Am J Hum Genet 2006; 79: 1059-1070.        [ Links ]

64. Wang QL, Chen S, Esumi N, Swain PK, Haines HS, Peng G, et al. QRX, a novel homeobox gene, modulates photoreceptor gene expression. Hum Mol Genet 2004; 13: 1025-1040.        [ Links ]

65. Wada Y, Abe T, Takeshita T, Sato H, Yanashima K, Tamai M. Mutation of human retinal fascin gene (FSCN2) causes autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2001; 42: 2395-2400.        [ Links ]

66. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001; 17: 42-51.        [ Links ]

67. Paloma E, Hjelmqvist L, Bayes M, García-Sandoval B, Ayuso C, Balcells S, et al. Novel mutations in the TULP1 gene causing autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2000; 41: 656-659.        [ Links ]

68. Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp Eye Res 2004; 79: 167-173.        [ Links ]

69. Bernal S, Calaf M, García-Hoyos M, Garcia-Sandoval B, Rosell J, Adan A, et al. Study of the involvement of the RGR, CRPB1 and CRB1 genes in the pathogenesis of autosomal recessive retinitis pigmentosa. J Med Genet 2003; 40: e89.        [ Links ]

70. Pelletier V, Jambou M, Delphin N, Zinovieva E, Stum M, Gigarel N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counselling. Hum Mutat 2007; 28: 81-91.        [ Links ]

71. García-Hoyos M, Garcia-Sandoval B, Cantalapiedra D, Riveiro R, Lorda-Sánchez I, Trujillo-Tiebas MJ, et al. Mutational Screening of the RP2 and RPGR Genes in Spanish families with X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006; 47: 3777-3782.        [ Links ]

72. Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004; 23: 306-317.        [ Links ]

73. den Hollander AI, Koenekoop RK, Mohamed MD, Arts HH, Boldt K, Towns KV, et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet 2007; 39: 889-895.        [ Links ]

74. Rice DS, Huang W, Jones HA, Hansen G, Ye GL, Xu N, et al. Severe retinal degeneration associated with disruption of semaphorin 4A. Invest Ophthalmol Vis Sci 2004; 45: 2767-2777.        [ Links ]

75. Johnson S, Halford S, Morris AG, Patel RJ, Wilkie SE, Hardcastle AJ, et al. Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 2003; 81: 304-314.        [ Links ]

76. Wycisk KA, Zeitz C, Feil S, Wittmer M, Forster U, Neidhardt J, et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet 2006; 79: 973-977.        [ Links ]

77. Tuson M, Marfany G, Gonzàlez-Duarte R. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 2004; 74: 128-138.        [ Links ]

78. Zangerl B, Goldstein O, Philp AR, Lindauer SJ, Pearce-Kelling SE, Mullins RF, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics 2006; 88: 551-563.        [ Links ]

79. Keen TJ, Hims MM, McKie AB, Moore AT, Doran RM, Mackey DA, et al. Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa. Eur J Hum Genet 2002; 10: 245-249.        [ Links ]

80. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374: 60-61.        [ Links ]

81. Liu XZ, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, et al. Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 1997; 17: 268-269.        [ Links ]

82. Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, et al. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 1997; 16: 191-193.        [ Links ]

83. Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000; 26: 56-60.        [ Links ]

84. Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 2003; 34: 421-428.        [ Links ]

85. Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 2001; 68: 26-37.        [ Links ]

86. Ahmed ZM, Smith TN, Riazuddin S, Makishima T, Ghosh M, Bokhari S, et al. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 2002; 110: 527-531.        [ Links ]

87. Friedman TB, Hinnant JT, Fridell RA, Wilcox ER, Raphael Y, Camper SA. DFNB3 families and Shaker-2 mice: mutations in an unconventional myosin, myo 15. Adv Otorhinolaryngol 2000; 56:131-144.        [ Links ]

88. Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, et al. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 2003; 72: 1315-1322.        [ Links ]

89. Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S, et al. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 2002; 99: 7518-7523.        [ Links ]

90. Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC. Non-syndromic deafness DFNA1 is associated with mutation in the human homolog of Drosophila gene diaphanous. Science 1997; 278: 1315-1318.        [ Links ]

91. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 1999; 96: 437-446.        [ Links ]

92. Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 1999; 21: 363-369.        [ Links ]

93. Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, et al. Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans. Science 1998; 279: 1950-1954.        [ Links ]

94. Bespalova IN, Van Camp G, Bom SJ, Brown DJ, Cryns K, DeWan AT, et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet 2001; 10: 2501-2508.        [ Links ]

95. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998; 20: 143-148.        [ Links ]

96. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997; 387: 80-83.        [ Links ]

97. Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaïb H, Lévi-Acobas, F, et al. Connexin 26 gene linked to a dominant deafness. Nature 1998; 393: 319-320.        [ Links ]

98. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997; 17: 411-422.        [ Links ]

99. Albert S, Blons H, Jonard L, Feldmann D, Chauvin P, Loundon N, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet 2006; 14: 773-779.        [ Links ]

100. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001; 104: 165-172.        [ Links ]

101. Robertson NG, Lu L, Heller S, Merchant SN, Eavey D, McKenna M, et al. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 1998; 20: 299-303.        [ Links ]

102. Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, et al. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 2001; 10: 195-200.        [ Links ]

103. de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 1995; 267: 685-688.        [ Links ]

104. Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 1998; 19: 60-62.        [ Links ]

105. McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, Shpargel KB, et al. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 1999; 23: 413-419.        [ Links ]

106. Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 1993; 4: 289-294.        [ Links ]

 

 

Dirección para correspondencia:
José M. Millán
Unidad de Genética
Hospital Universitario La Fe
Avda. Campanar, 21
46009 Valencia
España
E-mail: millan_jos@gva.es

Recibido: 12/3/07.
Aceptado: 24/10/08.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons